已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deconvoluting CO<sub>2</sub> Electroreduction Membrane-Electrode-Assembly Performance Via Five-Electrode Setup

恒电位仪 电极 参比电极 阳极 介电谱 电解 电解质 材料科学 膜电极组件 分析化学(期刊) 阴极 电化学 工作电极 标准氢电极 化学 色谱法 物理化学
作者
Kentaro U. Hansen,Feng Jiao
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (39): 1768-1768
标识
DOI:10.1149/ma2022-01391768mtgabs
摘要

For CO 2 electrolysis, a zero-gap or membrane-electrode-assembly (MEA) configuration is desirable for lowering internal resistances and enabling the use of dilute supporting electrolytes for operation at industrially relevant current densities (>100 mA cm -2 ). However, to rationally optimize individual electrolyzer components, the contributions that cell components (cathode, anode, and membrane) have on the total cell voltage and internal resistance need to be deconvoluted. Moreover, deconvolution techniques can provide operando snapshots of electrode dynamics and component potentials to help assess component degradation for accelerated stability testing protocols 1 . In this work, we present a technique for the complete deconvolution of the cell voltage and internal resistances through a five-electrode setup. Unlike similar methods 1-3 , three additional reference electrodes are introduced: two quasi-reference electrodes on each side of the MEA and one fritted reference electrode in the supporting electrolyte, fed to the anode, for validation of quasi-reference electrode potentials before and after testing. Furthermore, the technique presented in this work was optimized for ease of implementation for a standard test setup for laboratory-scale CO2 electrolysis without requiring modifications to the electrochemical cell endplates or a multi-channel potentiostat. Using this five-electrode setup, a significant membrane impedance at both high and low frequencies is identified for a CO 2 reduction MEA employing an anion exchange membrane. As shown via electrochemical impedance spectroscopy (EIS) (Fig. 1b), the membrane accounts for about 40% of the total cell impedance at high frequencies. Notably, the membrane also exhibits a low-frequency impedance attributed to concentration gradients across the membrane 4 . As an initial validation check, the individual EIS spectra of each component were summed to obtain the measured full cell EIS spectra, albeit with an introduction of measurement noise (Fig. 1b, d). To further validate the setup, the corners of the cathode and anode electrodes were cut asymmetrically to assess sensitivity towards edge effects from electrode misalignment reported for a similar technique (Fig. 1a,c) 2 . We demonstrate that the membrane impedance can be reversed by deliberately introducing this edge effect (Fig. 1b,d). In this reversed configuration, the measured membrane impedance is flipped due to the apparent reference electrode positions being swapped. Moreover, in this configuration the user inadvertently measures the cathode and anode through the membrane, thereby convoluting the signal. This is of significant concern for directly measuring the cathode mass transport dynamics measured at low frequency (<100 Hz) as the membrane has its own characteristic low-frequency impedance. We will present these results and discuss the application of this method towards catalyst layer optimization, diagnosing a working CO 2 reduction MEA employing a cation exchange membrane and comparing the performance of zero-gap and hot-pressed MEA configurations. References O. Sorsa, J. Nieminen, P. Kauranen, and T. Kallio, J. Electrochem. Soc., 166, F1326–F1336 (2019) https://iopscience.iop.org/article/10.1149/2.0461916jes. R. Zeng, R. C. T. Slade, and J. R. Varcoe, Electrochim. Acta, 56, 607–619 (2010) http://dx.doi.org/10.1016/j.electacta.2010.08.032. D. Salvatore and C. P. Berlinguette, ACS Energy Lett., 5, 215–220 (2020) https://pubs.acs.org/doi/10.1021/acsenergylett.9b02356. A. Kozmai et al., Membranes (Basel)., 11, 1–17 (2021). Acknowledgement This work was supported by the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy under award no. DE-EE0009287.0001 Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhh完成签到 ,获得积分10
刚刚
踏实的魔镜完成签到,获得积分10
1秒前
1秒前
完美的安荷完成签到 ,获得积分10
2秒前
2秒前
桃子完成签到 ,获得积分10
2秒前
从容海完成签到 ,获得积分10
3秒前
121314wld完成签到,获得积分10
4秒前
璇22完成签到 ,获得积分10
4秒前
颢懿完成签到 ,获得积分10
4秒前
寻123发布了新的文献求助10
4秒前
无极微光完成签到,获得积分0
5秒前
马霄鑫完成签到,获得积分10
5秒前
momoni完成签到 ,获得积分10
5秒前
皮皮完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
学霸宇大王完成签到 ,获得积分10
7秒前
弧光完成签到 ,获得积分0
8秒前
艾路完成签到,获得积分10
9秒前
kkdsseed发布了新的文献求助10
10秒前
NexusExplorer应助小橘子采纳,获得30
11秒前
ZZ发布了新的文献求助10
12秒前
wenlong完成签到 ,获得积分10
12秒前
13秒前
哈哈完成签到 ,获得积分10
13秒前
门柱帝完成签到,获得积分10
14秒前
kkdsseed完成签到,获得积分10
15秒前
此时此刻完成签到 ,获得积分10
15秒前
xiaoxuey完成签到 ,获得积分10
15秒前
喜宝发布了新的文献求助10
16秒前
BA1完成签到,获得积分10
18秒前
苹果鱼完成签到,获得积分10
18秒前
云yu完成签到,获得积分20
18秒前
tczw667完成签到,获得积分10
19秒前
wang完成签到 ,获得积分10
20秒前
20秒前
鹿小新完成签到 ,获得积分0
20秒前
迷人的爆米花完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685197
关于积分的说明 14838182
捐赠科研通 4668952
什么是DOI,文献DOI怎么找? 2538068
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816

今日热心研友

无情的踏歌
140
嘿嘿
7
BowieHuang
40
Criminology34
40
注:热心度 = 本日应助数 + 本日被采纳获取积分÷10