Robert H. Wilson,Simon Morton,Heather Deiderick,Monica L. Gerth,H S Paul,Isak B. Gerber,Avinash B. Patel,Andrew D. Ellington,Scott Hunicke‐Smith,Wayne M. Patrick
The DNA ligase from bacteriophage T4 is one of the most widely used enzymes in molecular biology. It has evolved to seal single-stranded nicks in double-stranded DNA, but not to join double-stranded fragments with cohesive or blunt ends. Its poor activity in vitro, particularly with blunt-ended substrates, can lead to failed or sub-optimal experimental outcomes. We have fused T4 DNA ligase to seven different DNA-binding proteins, including eukaryotic transcription factors, bacterial DNA repair proteins and archaeal DNA-binding domains. Representatives from each of these classes improved the activity of T4 DNA ligase, by up to 7-fold, in agarose gel-based screens for cohesive- and blunt-ended fragment joining. Overall, the most active variants were p50-ligase (i.e. NF-κB p50 fused to T4 DNA ligase) and ligase-cTF (T4 DNA ligase fused to an artificial, chimeric transcription factor). Ligase-cTF out-performed T4 DNA ligase by ∼160% in blunt end 'vector + insert' cloning assays, and p50-ligase showed an improvement of a similar magnitude when it was used to construct a library for Illumina sequencing. The activity of the Escherichia coli DNA ligase was also enhanced by fusion to p50. Together, these results suggest that our protein design strategy is a generalizable one for engineering improved DNA ligases.