A new sampling method for classifying imbalanced data based on support vector machine ensemble

机器学习 集成学习 模式识别(心理学) 分类器(UML) 随机森林 相关向量机 过采样 统计分类 特征选择 采样(信号处理) 极限学习机 多类分类
作者
Chuanxia Jian,Jian Gao,Yinhui Ao
出处
期刊:Neurocomputing [Elsevier]
卷期号:193 (193): 115-122 被引量:71
标识
DOI:10.1016/j.neucom.2016.02.006
摘要

The insufficient information from the minority examples cannot exactly represent the inherent structure of the dataset, which leads to a low prediction accuracy of the minority through the existing classification methods. The over- and under-sampling methods help to increase the prediction accuracy of the minority. However, the two methods either lose important information or add trivial information for classification, so as to affect the prediction accuracy of the minority. Therefore, a new different contribution sampling method (DCS) based on the contributions of the support vectors (SVs) and the nonsupport vectors (NSVs) to classification is proposed in this paper. The proposed DCS method applies different sampling methods for the SVs and the NSVs and uses the biased support vector machine (B-SVM) method to identify the SVs and the NSVs of an imbalanced data. Moreover, the synthetic minority over-sampling technique (SMOTE) and the random under-sampling technique (RUS) are used in the proposed method to re-sample the SVs in the minority and the NSVs in the majority, respectively. Examples are labeled by the ensemble of support vector machine (SVMen). Experiments are carried out on the imbalanced dataset which is selected from UCI, AVU06a, Statlog, DP01a, JP98a and CWH03a repositories. Experimental results show that for the imbalanced datasets, the proposed DCS method achieves a better performance in the aspects of Receiver Operating Characteristic (ROC) curve than other methods. The proposed DCS method improves 20.80%, 5.97%, 8.66% and 9.35% in terms of the geometric mean prediction accuracy G m e a n as compared with that achieved by using the NS, the US, the SMOTE and the ROS, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏苏发布了新的文献求助10
刚刚
积极孤菱完成签到,获得积分10
刚刚
把心放在肚里完成签到,获得积分10
3秒前
juju完成签到 ,获得积分10
4秒前
舒服的踏歌完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
沉辰发布了新的文献求助10
5秒前
FashionBoy应助飘零枫叶采纳,获得10
6秒前
6秒前
深情安青应助wangmin采纳,获得10
6秒前
6秒前
机灵的鸣凤完成签到 ,获得积分10
7秒前
7秒前
orixero应助飘逸的青雪采纳,获得10
7秒前
8秒前
9秒前
Sevendesu完成签到,获得积分10
9秒前
yar应助小田采纳,获得10
9秒前
lanbing802完成签到 ,获得积分10
10秒前
京客家发布了新的文献求助10
10秒前
ajun发布了新的文献求助10
10秒前
Bi发布了新的文献求助10
11秒前
11秒前
科研通AI2S应助活泼的路人采纳,获得10
11秒前
11秒前
yangxt-iga完成签到,获得积分20
12秒前
huangbing123完成签到 ,获得积分10
13秒前
cis2014完成签到,获得积分10
13秒前
huangllza发布了新的文献求助10
13秒前
xixi应助ajun采纳,获得10
14秒前
沉辰完成签到,获得积分10
15秒前
嘻嘻哈哈完成签到 ,获得积分10
15秒前
567完成签到,获得积分10
15秒前
在水一方应助加厚加大采纳,获得10
15秒前
17秒前
毕业顺利发布了新的文献求助10
18秒前
Calvin发布了新的文献求助10
18秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460836
求助须知:如何正确求助?哪些是违规求助? 3054804
关于积分的说明 9044646
捐赠科研通 2744589
什么是DOI,文献DOI怎么找? 1505613
科研通“疑难数据库(出版商)”最低求助积分说明 695745
邀请新用户注册赠送积分活动 695154