A new sampling method for classifying imbalanced data based on support vector machine ensemble

支持向量机 计算机科学 人工智能 机器学习 接收机工作特性 模式识别(心理学) 样品(材料) 数据挖掘 过采样 采样(信号处理) 计算机视觉 计算机网络 色谱法 滤波器(信号处理) 化学 带宽(计算)
作者
Chuanxia Jian,Jian Gao,Yinhui Ao
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:193: 115-122 被引量:136
标识
DOI:10.1016/j.neucom.2016.02.006
摘要

The insufficient information from the minority examples cannot exactly represent the inherent structure of the dataset, which leads to a low prediction accuracy of the minority through the existing classification methods. The over- and under-sampling methods help to increase the prediction accuracy of the minority. However, the two methods either lose important information or add trivial information for classification, so as to affect the prediction accuracy of the minority. Therefore, a new different contribution sampling method (DCS) based on the contributions of the support vectors (SVs) and the nonsupport vectors (NSVs) to classification is proposed in this paper. The proposed DCS method applies different sampling methods for the SVs and the NSVs and uses the biased support vector machine (B-SVM) method to identify the SVs and the NSVs of an imbalanced data. Moreover, the synthetic minority over-sampling technique (SMOTE) and the random under-sampling technique (RUS) are used in the proposed method to re-sample the SVs in the minority and the NSVs in the majority, respectively. Examples are labeled by the ensemble of support vector machine (SVMen). Experiments are carried out on the imbalanced dataset which is selected from UCI, AVU06a, Statlog, DP01a, JP98a and CWH03a repositories. Experimental results show that for the imbalanced datasets, the proposed DCS method achieves a better performance in the aspects of Receiver Operating Characteristic (ROC) curve than other methods. The proposed DCS method improves 20.80%, 5.97%, 8.66% and 9.35% in terms of the geometric mean prediction accuracy G m e a n as compared with that achieved by using the NS, the US, the SMOTE and the ROS, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
桑葚啊完成签到,获得积分10
3秒前
复杂的之卉完成签到,获得积分10
6秒前
6秒前
6秒前
plant发布了新的文献求助10
6秒前
7秒前
8秒前
9秒前
甜蜜寄文完成签到 ,获得积分10
11秒前
12秒前
12秒前
落寞奎发布了新的文献求助10
13秒前
你怎么那么美完成签到,获得积分10
13秒前
13秒前
15秒前
小马甲应助wzj采纳,获得10
15秒前
传奇3应助plant采纳,获得10
15秒前
Ava应助SL采纳,获得10
16秒前
xxxyuxi发布了新的文献求助10
16秒前
19秒前
Bio应助Nelson采纳,获得30
20秒前
Triste发布了新的文献求助10
20秒前
21秒前
21秒前
幽默的小之完成签到,获得积分10
21秒前
落寞奎完成签到,获得积分10
21秒前
23秒前
23秒前
oliver1234完成签到,获得积分10
23秒前
23秒前
月下荷花发布了新的文献求助10
24秒前
xxxyuxi完成签到,获得积分10
24秒前
oliver1234发布了新的文献求助20
26秒前
26秒前
Lucas应助Chenyan775199采纳,获得10
27秒前
李浩然发布了新的文献求助10
27秒前
27秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979704
求助须知:如何正确求助?哪些是违规求助? 3523679
关于积分的说明 11218338
捐赠科研通 3261196
什么是DOI,文献DOI怎么找? 1800490
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182