Harmonic analysis in integrated energy system based on compressed sensing

压缩传感 计算机科学 谐波 能量(信号处理) 电子工程 计算复杂性理论 算法 滤波器(信号处理) 信号重构 采样(信号处理) 信号(编程语言) 离散傅里叶变换(通用) 傅里叶变换 信号处理 数学 工程类 傅里叶分析 数字信号处理 声学 物理 数学分析 统计 分数阶傅立叶变换 计算机视觉 程序设计语言
作者
Ting Yang,Haibo Pen,Dan Wang,Zhaoxia Wang
出处
期刊:Applied Energy [Elsevier]
卷期号:165: 583-591 被引量:20
标识
DOI:10.1016/j.apenergy.2015.12.058
摘要

The advent of Integrated Energy Systems enabled various distributed energy to access the system through different power electronic devices. The development of this has made the harmonic environment more complex. It needs low complexity and high precision of harmonic detection and analysis methods to improve power quality. To solve the shortages of large data storage capacities and high complexity of compression in sampling under the Nyquist sampling framework, this research paper presents a harmonic analysis scheme based on compressed sensing theory. The proposed scheme enables the performance of the functions of compressive sampling, signal reconstruction and harmonic detection simultaneously. In the proposed scheme, the sparsity of the harmonic signals in the base of the Discrete Fourier Transform (DFT) is numerically calculated first. This is followed by providing a proof of the matching satisfaction of the necessary conditions for compressed sensing. The binary sparse measurement is then leveraged to reduce the storage space in the sampling unit in the proposed scheme. In the recovery process, the scheme proposed a novel reconstruction algorithm called the Spectral Projected Gradient with Fundamental Filter (SPG-FF) algorithm to enhance the reconstruction precision. One of the actual microgrid systems is used as simulation example. The results of the experiment shows that the proposed scheme effectively enhances the precision of harmonic and inter-harmonic detection with low computing complexity, and has good capability of signal reconstruction. The maximum detection error reaches 0.0315%, and the reconstruction signals to noise ratio (SNR) is higher than 89 dB.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
翠翠发布了新的文献求助10
1秒前
半山发布了新的文献求助10
2秒前
2秒前
天天快乐应助CO2采纳,获得10
2秒前
隐形曼青应助junzilan采纳,获得10
3秒前
Dksido发布了新的文献求助10
3秒前
4秒前
思源应助卓哥采纳,获得10
4秒前
mysci完成签到,获得积分10
7秒前
8秒前
Quzhengkai发布了新的文献求助10
9秒前
9秒前
10秒前
落寞晓灵完成签到,获得积分10
10秒前
ORAzzz应助翠翠采纳,获得20
11秒前
zoe完成签到,获得积分10
11秒前
习习应助学术小白采纳,获得10
11秒前
12秒前
13秒前
tianny关注了科研通微信公众号
14秒前
14秒前
CO2发布了新的文献求助10
14秒前
桐桐应助zhangscience采纳,获得10
15秒前
求助发布了新的文献求助10
16秒前
buno应助zoe采纳,获得10
17秒前
junzilan发布了新的文献求助10
17秒前
17秒前
细品岁月完成签到 ,获得积分10
17秒前
细心书蕾完成签到 ,获得积分10
18秒前
无花果应助l11x29采纳,获得10
20秒前
20秒前
老詹头发布了新的文献求助10
20秒前
思源应助叫滚滚采纳,获得10
21秒前
22秒前
刘歌完成签到 ,获得积分10
22秒前
阿巡完成签到,获得积分10
22秒前
Chen完成签到,获得积分10
24秒前
LSH970829发布了新的文献求助10
24秒前
哈哈哈完成签到 ,获得积分10
25秒前
汤姆完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808