Prediction model to predict critical weight loss in patients with head and neck cancer during (chemo)radiotherapy

头颈部癌 放射治疗 放化疗 医学 头颈部 癌症 放射科 内科学 外科
作者
J.A.E. Langius,Jos W. R. Twisk,Martine Kampman,P. Doornaert,Mark H. H. Kramer,P.J.M. Weijs,C. René Leemans
出处
期刊:Oral Oncology [Elsevier]
卷期号:52: 91-96 被引量:43
标识
DOI:10.1016/j.oraloncology.2015.10.021
摘要

Patients with head and neck cancer (HNC) frequently encounter weight loss with multiple negative outcomes as a consequence. Adequate treatment is best achieved by early identification of patients at risk for critical weight loss. The objective of this study was to detect predictive factors for critical weight loss in patients with HNC receiving (chemo)radiotherapy ((C)RT). In this cohort study, 910 patients with HNC were included receiving RT (±surgery/concurrent chemotherapy) with curative intent. Body weight was measured at the start and end of (C)RT. Logistic regression and classification and regression tree (CART) analyses were used to analyse predictive factors for critical weight loss (defined as >5%) during (C)RT. Possible predictors included gender, age, WHO performance status, tumour location, TNM classification, treatment modality, RT technique (three-dimensional conformal RT (3D-RT) vs intensity-modulated RT (IMRT)), total dose on the primary tumour and RT on the elective or macroscopic lymph nodes. At the end of (C)RT, mean weight loss was 5.1 ± 4.9%. Fifty percent of patients had critical weight loss during (C)RT. The main predictors for critical weight loss during (C)RT by both logistic and CART analyses were RT on the lymph nodes, higher RT dose on the primary tumour, receiving 3D-RT instead of IMRT, and younger age. Critical weight loss during (C)RT was prevalent in half of HNC patients. To predict critical weight loss, a practical prediction tree for adequate nutritional advice was developed, including the risk factors RT to the neck, higher RT dose, 3D-RT, and younger age.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研猪完成签到,获得积分10
刚刚
大个应助qqwxp采纳,获得10
刚刚
jennifercui完成签到,获得积分10
刚刚
SXM完成签到,获得积分10
刚刚
酷酷的起眸完成签到,获得积分10
1秒前
细腻沅完成签到,获得积分10
1秒前
LILING完成签到,获得积分10
1秒前
123发布了新的文献求助10
2秒前
赖床艺术家完成签到,获得积分10
3秒前
领导范儿应助通~采纳,获得10
4秒前
端庄的黑米完成签到,获得积分10
4秒前
4秒前
领导范儿应助坤坤采纳,获得10
4秒前
5秒前
神勇的雅香应助司徒迎曼采纳,获得10
5秒前
5秒前
bkagyin应助椰子采纳,获得10
5秒前
Owen应助舒服的茹嫣采纳,获得10
5秒前
呼吸之野应助按住心动采纳,获得20
6秒前
6秒前
身为风帆发布了新的文献求助10
6秒前
changjiaren完成签到,获得积分10
6秒前
风中的怜阳完成签到,获得积分10
7秒前
自信号厂完成签到 ,获得积分10
7秒前
小蘑菇应助ccc采纳,获得10
8秒前
shuo完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
aich完成签到,获得积分10
9秒前
上官若男应助YE采纳,获得10
10秒前
Jasper应助YaoX采纳,获得10
10秒前
天天快乐应助威武绿真采纳,获得10
10秒前
MADKAI发布了新的文献求助10
10秒前
11秒前
慕青应助April采纳,获得10
11秒前
123完成签到,获得积分10
11秒前
Xu发布了新的文献求助10
11秒前
manan发布了新的文献求助10
11秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740