电催化剂
磷化物
X射线光电子能谱
循环伏安法
催化作用
材料科学
化学工程
电化学
无机化学
化学
电极
物理化学
生物化学
工程类
作者
Fadl H. Saadi,Azhar I. Carim,Erik Verlage,John C. Hemminger,Nathan S. Lewis,Manuel P. Soriaga
摘要
Films of CoP have been electrochemically synthesized, characterized, and evaluated for performance as a catalyst for the hydrogen-evolution reaction (HER). The film was synthesized by cathodic deposition from a boric acid solution of Co2+ and H2PO2– on copper substrates followed by operando remediation of exogenous contaminants. The films were characterized structurally and compositionally by scanning-electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Raman spectrophotometry. The catalytic activity was evaluated by cyclic voltammetry and chronopotentiometry. Surface characterization prior to electrocatalysis indicated that the film consisted of micrometer-sized spherical clusters located randomly and loosely on a slightly roughened surface. The composition of both the clusters and surface consisted of cobalt in the metallic, phosphide, and amorphous-oxide forms (CoO·Co2O3) and of phosphorus as phosphide and orthophosphate. The orthophosphate species, produced by air-oxidation, were eliminated upon HER electrocatalysis in sulfuric acid. The operando film purification yielded a functional electrocatalyst with a Co:P stoichiometric ratio of 1:1. After the HER, the surface was densely packed with micrometer-sized, mesa-like particles whose tops were flat and smooth. The CoP eletrodeposit exhibited an 85 mV overvoltage (η) for the HER at a current density of 10 mA cm–2 and was stable under operation in highly acidic solution, with an increase in η of 18 mV after 24 h of continuous operation. The comparative HER catalytic performance of CoP, film or nanoparticles, is as follows: ηPt < ηCoP film = ηCoP NP, ηNi2P < ηCoSe2 < ηMoS2 < ηMoSe2.
科研通智能强力驱动
Strongly Powered by AbleSci AI