EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 心理学 物理 数学优化 频道(广播) 热力学 生物 植物 程序设计语言 计算机网络
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:899
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis-to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助67n采纳,获得10
刚刚
刚刚
刚刚
柏大将军发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
白白发布了新的文献求助10
2秒前
糊涂的剑发布了新的文献求助10
2秒前
2秒前
Ava应助自信的储采纳,获得10
2秒前
打工人发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
fjkssadjk发布了新的文献求助10
3秒前
斯文败类应助妮娜a采纳,获得10
4秒前
5秒前
loong应助小怡采纳,获得20
5秒前
shy关闭了shy文献求助
5秒前
123发布了新的文献求助30
5秒前
风趣思山发布了新的文献求助10
5秒前
称心奇迹发布了新的文献求助10
6秒前
右右发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
领导范儿应助糊涂的剑采纳,获得10
7秒前
1234完成签到,获得积分10
8秒前
xiaoshuwang发布了新的文献求助10
8秒前
Hao完成签到,获得积分10
9秒前
开心南松发布了新的文献求助10
10秒前
10秒前
12345发布了新的文献求助10
10秒前
chxh211完成签到,获得积分10
11秒前
稳重翅膀发布了新的文献求助10
11秒前
酷波er应助右右采纳,获得10
12秒前
12秒前
TT完成签到,获得积分10
12秒前
自觉的千青完成签到,获得积分10
13秒前
何大大发布了新的文献求助10
13秒前
13秒前
67n发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704348
求助须知:如何正确求助?哪些是违规求助? 5157375
关于积分的说明 15241967
捐赠科研通 4858456
什么是DOI,文献DOI怎么找? 2607177
邀请新用户注册赠送积分活动 1558228
关于科研通互助平台的介绍 1516038