EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 生物 程序设计语言 热力学 心理学 计算机网络 数学优化 频道(广播) 植物 物理
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:742
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis—to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助sam1514采纳,获得10
刚刚
酷波er应助刘智山采纳,获得10
1秒前
1秒前
Jacklzu完成签到,获得积分10
1秒前
wrwywzx完成签到,获得积分10
2秒前
小叶大王完成签到,获得积分20
2秒前
3秒前
3秒前
4秒前
Joleneli100完成签到,获得积分10
4秒前
bao驳回了无花果应助
4秒前
4秒前
星辰大海应助渊_采纳,获得10
4秒前
思绪完成签到 ,获得积分10
5秒前
YEHEI完成签到 ,获得积分10
5秒前
李健应助Na2CO3采纳,获得10
5秒前
vesta完成签到,获得积分10
5秒前
5秒前
6秒前
GG发布了新的文献求助10
6秒前
OKOK发布了新的文献求助10
6秒前
汉堡一号完成签到,获得积分10
6秒前
6秒前
6秒前
Patrick完成签到,获得积分20
6秒前
6秒前
026发布了新的文献求助10
6秒前
richestchen完成签到,获得积分10
6秒前
7秒前
LSY发布了新的文献求助10
7秒前
junjie发布了新的文献求助10
7秒前
与秋逐鹿发布了新的文献求助10
8秒前
科研通AI6应助邓谷云采纳,获得10
8秒前
8秒前
风云完成签到,获得积分10
8秒前
所所应助harden采纳,获得10
8秒前
研友_VZG7GZ应助禾几采纳,获得10
8秒前
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064