已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 心理学 物理 数学优化 频道(广播) 热力学 生物 植物 程序设计语言 计算机网络
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:899
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis-to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
羽魄完成签到 ,获得积分10
1秒前
2秒前
2秒前
王霏霏发布了新的文献求助10
3秒前
chaijy87完成签到,获得积分10
3秒前
5秒前
从容面包发布了新的文献求助10
5秒前
小冠军发布了新的文献求助10
6秒前
6秒前
王宽宽宽发布了新的文献求助10
7秒前
冷酷电脑完成签到,获得积分20
8秒前
健忘的灵槐完成签到,获得积分10
9秒前
9秒前
小鸽发布了新的文献求助10
9秒前
10秒前
10秒前
英勇羿完成签到,获得积分10
11秒前
huahua完成签到 ,获得积分10
11秒前
12秒前
Anna完成签到 ,获得积分10
12秒前
James完成签到,获得积分10
13秒前
鱼来也发布了新的文献求助10
13秒前
动听的飞松完成签到 ,获得积分10
14秒前
儒雅的城完成签到 ,获得积分10
14秒前
英勇羿发布了新的文献求助10
14秒前
王宽宽宽完成签到,获得积分10
15秒前
15秒前
18秒前
18秒前
bkagyin应助黑心大粽子采纳,获得10
20秒前
20秒前
龙龙宝宝完成签到,获得积分10
20秒前
TXZ06完成签到,获得积分10
21秒前
12A完成签到,获得积分10
22秒前
Carl完成签到 ,获得积分10
25秒前
月满西楼完成签到,获得积分10
25秒前
25秒前
失眠可愁完成签到,获得积分10
25秒前
27秒前
HH完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723058
求助须知:如何正确求助?哪些是违规求助? 5274370
关于积分的说明 15298145
捐赠科研通 4871778
什么是DOI,文献DOI怎么找? 2616191
邀请新用户注册赠送积分活动 1566040
关于科研通互助平台的介绍 1522950