EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 生物 程序设计语言 热力学 心理学 计算机网络 数学优化 频道(广播) 植物 物理
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:742
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis—to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
luoshi发布了新的文献求助10
刚刚
刚刚
可靠sue完成签到,获得积分10
1秒前
dzdzn3完成签到 ,获得积分20
1秒前
zjh发布了新的文献求助10
1秒前
yu_z完成签到 ,获得积分10
1秒前
上官若男应助韭菜盒子采纳,获得10
1秒前
细腻晓露完成签到,获得积分10
1秒前
大吴克发布了新的文献求助10
2秒前
饱满的煎饼完成签到,获得积分10
2秒前
dzdzn3关注了科研通微信公众号
2秒前
KING完成签到,获得积分10
3秒前
seventonight2完成签到,获得积分10
3秒前
顾矜应助xwc采纳,获得10
3秒前
Relax发布了新的文献求助10
3秒前
微笑的语梦完成签到 ,获得积分10
4秒前
落寞的紫山完成签到,获得积分10
4秒前
杨大大发布了新的文献求助10
4秒前
BOSSJING完成签到,获得积分10
4秒前
Jasper应助搞怪的人龙采纳,获得10
5秒前
5秒前
benj完成签到,获得积分10
5秒前
5秒前
zoko发布了新的文献求助10
5秒前
周老八发布了新的文献求助10
5秒前
5秒前
小杨爱吃羊完成签到 ,获得积分10
5秒前
lszhw完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
美好乌龟完成签到 ,获得积分10
6秒前
6秒前
烟雨行舟完成签到,获得积分10
7秒前
7秒前
7秒前
搜集达人应助刘星星采纳,获得30
8秒前
赘婿应助顺利水杯采纳,获得10
8秒前
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740