清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 生物 程序设计语言 热力学 心理学 计算机网络 数学优化 频道(广播) 植物 物理
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:742
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis—to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jessica应助精明代灵采纳,获得10
2秒前
大个应助安静的小蘑菇采纳,获得30
2秒前
上官若男应助巫马百招采纳,获得10
4秒前
量子星尘发布了新的文献求助10
18秒前
26秒前
紫熊发布了新的文献求助10
31秒前
巫马百招发布了新的文献求助10
31秒前
巫马百招完成签到,获得积分10
37秒前
1分钟前
1分钟前
1分钟前
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
紫熊完成签到,获得积分10
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
2分钟前
锦城纯契完成签到 ,获得积分10
2分钟前
常有李完成签到,获得积分10
4分钟前
Azure完成签到 ,获得积分10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
carolsoongmm完成签到,获得积分10
6分钟前
hu完成签到,获得积分20
6分钟前
6分钟前
精明代灵完成签到,获得积分10
6分钟前
精明代灵发布了新的文献求助10
6分钟前
hu发布了新的文献求助10
6分钟前
6分钟前
gwbk完成签到,获得积分10
6分钟前
7分钟前
量子星尘发布了新的文献求助10
7分钟前
kklkimo完成签到,获得积分10
7分钟前
慕青应助erjfuhe采纳,获得10
7分钟前
月军完成签到 ,获得积分10
8分钟前
量子星尘发布了新的文献求助10
8分钟前
Wenfeifei发布了新的文献求助50
8分钟前
无私雅柏完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664524
求助须知:如何正确求助?哪些是违规求助? 4864433
关于积分的说明 15107930
捐赠科研通 4823164
什么是DOI,文献DOI怎么找? 2582020
邀请新用户注册赠送积分活动 1536109
关于科研通互助平台的介绍 1494538