EEG artifact removal—state-of-the-art and guidelines

最大熵 工件(错误) 计算机科学 脑电图 独立成分分析 鉴定(生物学) 人工智能 信号(编程语言) 组分(热力学) 最大化 盲信号分离 模式识别(心理学) 干扰(通信) 语音识别 机器学习 数学 精神科 生物 程序设计语言 热力学 心理学 计算机网络 数学优化 频道(广播) 植物 物理
作者
José Antonio Urigüen,Begonya García-Zapirain
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:12 (3): 031001-031001 被引量:742
标识
DOI:10.1088/1741-2560/12/3/031001
摘要

This paper presents an extensive review on the artifact removal algorithms used to remove the main sources of interference encountered in the electroencephalogram (EEG), specifically ocular, muscular and cardiac artifacts. We first introduce background knowledge on the characteristics of EEG activity, of the artifacts and of the EEG measurement model. Then, we present algorithms commonly employed in the literature and describe their key features. Lastly, principally on the basis of the results provided by various researchers, but also supported by our own experience, we compare the state-of-the-art methods in terms of reported performance, and provide guidelines on how to choose a suitable artifact removal algorithm for a given scenario. With this review we have concluded that, without prior knowledge of the recorded EEG signal or the contaminants, the safest approach is to correct the measured EEG using independent component analysis—to be precise, an algorithm based on second-order statistics such as second-order blind identification (SOBI). Other effective alternatives include extended information maximization (InfoMax) and an adaptive mixture of independent component analyzers (AMICA), based on higher order statistics. All of these algorithms have proved particularly effective with simulations and, more importantly, with data collected in controlled recording conditions. Moreover, whenever prior knowledge is available, then a constrained form of the chosen method should be used in order to incorporate such additional information. Finally, since which algorithm is the best performing is highly dependent on the type of the EEG signal, the artifacts and the signal to contaminant ratio, we believe that the optimal method for removing artifacts from the EEG consists in combining more than one algorithm to correct the signal using multiple processing stages, even though this is an option largely unexplored by researchers in the area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
avalanche应助科研通管家采纳,获得50
刚刚
可爱的函函应助木木采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
积极的罡完成签到 ,获得积分10
1秒前
合适猫咪完成签到,获得积分10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得30
1秒前
Aaron567应助科研通管家采纳,获得30
1秒前
zh发布了新的文献求助10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
哈哈哈完成签到,获得积分10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
包容煎饼发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
Ian_Zhang应助科研通管家采纳,获得10
2秒前
2秒前
Ian_Zhang应助科研通管家采纳,获得10
2秒前
natmed应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
小杭76应助wanna采纳,获得10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406763
求助须知:如何正确求助?哪些是违规求助? 4524486
关于积分的说明 14098816
捐赠科研通 4438353
什么是DOI,文献DOI怎么找? 2436203
邀请新用户注册赠送积分活动 1428245
关于科研通互助平台的介绍 1406340