激光阈值
激光器
等离子体
原子物理学
激发态
亚稳态
材料科学
激发
电场
动力学
电子密度
余辉
分析化学(期刊)
化学
光学
物理
有机化学
量子力学
色谱法
伽马射线暴
天文
作者
Robert J. Carman,Richard P. Mildren,Michael J. Withford,Daniel J. Brown,James A. Piper
摘要
A detailed computer model has been used to simulate the plasma kinetics and lasing characteristics in a kinetically enhanced copper vapor laser (KE-CVL) which utilizes Ne-H/sub 2/-HCl buffer gas mixtures. The model reproduces key features of the observed operating characteristics of the KE-CVL-in particular, relating to the electrical characteristics of the plasma tube, time evolution of Cu 4s/sup 2/S/sub 1/2/ ground state density, and formation of the laser output. It is shown that the principal role of the HCl additive is to increase the electron loss rate during the interpulse period via dissociative attachment reactions between free electrons and vibrationally excited HCl (/spl nu/=1,2) molecules. This leads to a reduction of the prepulse electron density establishing more favorable prepulse conditions for laser action during the subsequent excitation phase. In the KE-CVL, the plasma skin effect governing the development of the radial electric field is greatly reduced compared to conventional CVL's, altering the spatio-temporal evolution of the optical gain and laser field intensities to substantially enhance high-beam-quality output. Comparisons between model results and experimental data for the decay rate of the Cu 4s/sup 2/ /sup 2/D/sub 3/2/ metastable lower laser level in the early afterglow suggest that there may be an additional de-excitation mechanism for the /sup 2/D/sub 3/2,5/2/ levels in the KE-CVL plasma which has yet to be identified.
科研通智能强力驱动
Strongly Powered by AbleSci AI