Acid stress response in enteropathogenic gammaproteobacteria: an aptitude for survivalThis paper is one of a selection of papers published in this special issue entitled “Canadian Society of Biochemistry, Molecular & Cellular Biology 52nd Annual Meeting — Protein Folding: Principles and Diseases” and has undergone the Journal's usual peer review process.
Enteric bacteria such as Escherichia coli have acquired a wide array of acid stress response systems to counteract the extreme acidity encountered when invading the host’s digestive or urinary tracts. These acid stress response systems are both enzyme and chaperone based. The 3 main enzyme-based acid resistance pathways are glutamate-, arginine-, and lysine-decarboxylase pathways. They are under a complex regulatory network allowing the bacteria to fine tune its response to the external environment. HdeA and HdeB are the main chaperones involved in acid stress response. The decarboxylase systems are also found in Vibrio cholera, Vibrio vulnifus, Shigella flexneri, and Salmonella typhimurium, although some differences exist in their functional mechanism and regulation.