电子顺磁共振
激进的
化学
光化学
聚乙烯
辐照
氧气
顺磁性
核磁共振
有机化学
量子力学
物理
核物理学
作者
Todd M. Alam,Mathias C. Celina,John Collier,Barbara H. Currier,John H. Currier,Simon K. Jackson,Dean O. Kuethe,Graham S. Timmins
摘要
Abstract The shelf aging of irradiated ultrahigh‐molecular‐weight polyethylene (UHMWPE) causes subsurface oxidation, which leads to failure in UHMWPE orthopedic components, yet the mechanisms causing subsurface oxidation remain unclear. The shelf aging of γ‐irradiated UHMWPE bars has been studied with electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) imaging and with microtoming and Fourier transform infrared microscopy. The bars initially contained only allyl radicals, and upon air exposure, a surface layer of peroxyl radicals formed through the reaction of allyl radicals with oxygen. Importantly, a band of low radical intensity just beneath the peroxyl layer became apparent. NMR imaging showed a zone of altered proton relaxation in this zone. With increasing time, surface peroxyl radicals persisted in comparison with the interior allyl radicals, although oxygen did not appear to penetrate any more deeply into the bar. The area of maximal oxidation and mechanical disruption, measured after 3 years, was at the interface between the zone of exterior peroxyl radicals and the zone of low radical intensity. We present a mechanism involving the intermediacy of sterically strained reactive dialkyl peroxides at this interface to explain subsurface oxidation. We also demonstrate that EPR and NMR imaging provides information that could potentially be used to identify subsurface oxidized UHMWPE components before failure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5929–5941, 2004
科研通智能强力驱动
Strongly Powered by AbleSci AI