Computerized lesion segmentation of breast ultrasound based on marker‐controlled watershed transformation

乳房成像 转化(遗传学) 医学 分割 超声波 放射科 分水岭 医学影像学 乳腺癌 乳腺摄影术 核医学 人工智能 计算机视觉 计算机科学 癌症 内科学 生物 生物化学 基因
作者
Wilfrido Gómez‐Flores,L. Leija,André Victor Alvarenga,A. F. C. Infantosi,Wagner Coelho de Albuquerque Pereira
出处
期刊:Medical Physics [Wiley]
卷期号:37 (1): 82-95 被引量:108
标识
DOI:10.1118/1.3265959
摘要

This paper presents a computerized segmentation method for breast lesions on ultrasound (US) images.It consists of first applying a contrast-enhanced approach, i.e., a contrast-limited adaptive histogram equalization. Then, aiming at removing speckle and enhancing the lesion boundary, an anisotropic diffusion filter, guided by texture descriptors derived from a set of Gabor filters, is applied. To eliminate the distant pixels that do not belong to the tumor, the resulting filtered image is multiplied by a constraint Gaussian function. By doing so, both the segmentation and the marker functions are generated and could be used in the marker-controlled watershed transformation algorithm to create potential lesion boundaries. Finally, to determine the lesion contour, the average radial derivative function is evaluated. The proposed method was tested with 50 breast US images and 60 simulated "ultrasound-like" images. Accuracy and precision of the segmentation method were then assessed. For the accuracy, three parameters were used: Overlap ratio (OR), normalized residual value (nrv), and proportional distance (PD) between contours.The average results for US images were OR = 0.86 +/- 0.05, nrv = 0.16 +/- 0.06, and PD = 6.58 +/- 2.52%. For simulated ultrasound-like images, a better performance (OR = 0.92 +/- 0.01, nrv = 0.08 +/- 0.01, and PD = 3.20 +/- 0.53%) was achieved.The segmentation method proposed was capable of delineating the lesion contours with high accuracy in comparison to both the radiologists' delineations and the true delineations of simulated images. Moreover, this method was also found to be robust to human-dependent parameters variations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DZ发布了新的文献求助10
刚刚
梦槐发布了新的文献求助10
刚刚
小蘑菇应助leo采纳,获得10
1秒前
Miraitowa完成签到,获得积分20
2秒前
2秒前
Owen应助da采纳,获得10
3秒前
李爱国应助da采纳,获得10
4秒前
顾矜应助da采纳,获得10
4秒前
脑洞疼应助da采纳,获得10
4秒前
小马甲应助da采纳,获得10
4秒前
Hello应助da采纳,获得10
4秒前
赘婿应助da采纳,获得10
4秒前
酷波er应助da采纳,获得10
4秒前
深情安青应助da采纳,获得10
4秒前
酷波er应助da采纳,获得10
4秒前
Yan完成签到,获得积分10
5秒前
Akim应助benben采纳,获得30
5秒前
6秒前
6秒前
Jasper应助坚强的草履虫采纳,获得10
7秒前
搞笑5次发布了新的文献求助10
8秒前
谦让蜜蜂完成签到,获得积分10
8秒前
田様应助da采纳,获得10
10秒前
万能图书馆应助da采纳,获得10
10秒前
上官若男应助da采纳,获得10
10秒前
丘比特应助da采纳,获得10
10秒前
英姑应助da采纳,获得10
10秒前
可爱的函函应助da采纳,获得10
10秒前
彭于晏应助da采纳,获得10
10秒前
搜集达人应助da采纳,获得10
10秒前
情怀应助da采纳,获得10
10秒前
李健的粉丝团团长应助da采纳,获得10
10秒前
科研小白发布了新的文献求助10
11秒前
程小懒完成签到 ,获得积分10
14秒前
shinn发布了新的文献求助10
16秒前
赘婿应助科研小白采纳,获得10
16秒前
今后应助da采纳,获得10
16秒前
李健应助da采纳,获得10
16秒前
搜集达人应助甜美的雁开采纳,获得10
16秒前
Hello应助da采纳,获得10
16秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979791
求助须知:如何正确求助?哪些是违规求助? 3523813
关于积分的说明 11219007
捐赠科研通 3261341
什么是DOI,文献DOI怎么找? 1800573
邀请新用户注册赠送积分活动 879179
科研通“疑难数据库(出版商)”最低求助积分说明 807193