乳房成像
转化(遗传学)
医学
分割
超声波
放射科
分水岭
医学影像学
乳腺癌
乳腺摄影术
核医学
人工智能
计算机视觉
计算机科学
癌症
内科学
生物
生物化学
基因
作者
Wilfrido Gómez‐Flores,L. Leija,André Victor Alvarenga,A. F. C. Infantosi,Wagner Coelho de Albuquerque Pereira
摘要
This paper presents a computerized segmentation method for breast lesions on ultrasound (US) images.It consists of first applying a contrast-enhanced approach, i.e., a contrast-limited adaptive histogram equalization. Then, aiming at removing speckle and enhancing the lesion boundary, an anisotropic diffusion filter, guided by texture descriptors derived from a set of Gabor filters, is applied. To eliminate the distant pixels that do not belong to the tumor, the resulting filtered image is multiplied by a constraint Gaussian function. By doing so, both the segmentation and the marker functions are generated and could be used in the marker-controlled watershed transformation algorithm to create potential lesion boundaries. Finally, to determine the lesion contour, the average radial derivative function is evaluated. The proposed method was tested with 50 breast US images and 60 simulated "ultrasound-like" images. Accuracy and precision of the segmentation method were then assessed. For the accuracy, three parameters were used: Overlap ratio (OR), normalized residual value (nrv), and proportional distance (PD) between contours.The average results for US images were OR = 0.86 +/- 0.05, nrv = 0.16 +/- 0.06, and PD = 6.58 +/- 2.52%. For simulated ultrasound-like images, a better performance (OR = 0.92 +/- 0.01, nrv = 0.08 +/- 0.01, and PD = 3.20 +/- 0.53%) was achieved.The segmentation method proposed was capable of delineating the lesion contours with high accuracy in comparison to both the radiologists' delineations and the true delineations of simulated images. Moreover, this method was also found to be robust to human-dependent parameters variations.
科研通智能强力驱动
Strongly Powered by AbleSci AI