Coh-Metrix: Capturing Linguistic Features of Cohesion

凝聚力(化学) 可读性 段落 判决 计算机科学 语言学 自然语言处理 阅读理解 心理学 人工智能 阅读(过程) 哲学 化学 有机化学 万维网 程序设计语言
作者
Danielle S. McNamara,Max M. Louwerse,Philip M. McCarthy,Arthur C. Graesser
出处
期刊:Discourse Processes [Taylor & Francis]
卷期号:47 (4): 292-330 被引量:285
标识
DOI:10.1080/01638530902959943
摘要

Abstract This study addresses the need in discourse psychology for computational techniques that analyze text on multiple levels of cohesion and text difficulty. Discourse psychologists often investigate phenomena related to discourse processing using lengthy texts containing multiple paragraphs, as opposed to single word and sentence stimuli. Characterizing such texts in terms of cohesion and coherence is challenging. Some computational tools are available, but they are either fragmented over different databases or they assess single, specific features of text. Coh-Metrix is a computational linguistic tool that measures text cohesion and text difficulty on a range of word, sentence, paragraph, and discourse dimensions. This study investigated the validity of Coh-Metrix as a measure of cohesion in text using stimuli from published discourse psychology studies as a benchmark. Results showed that Coh-Metrix indexes of cohesion (individually and combined) significantly distinguished the high- versus low-cohesion versions of these texts. The results also showed that commonly used readability indexes (e.g., Flesch–Kincaid) inappropriately distinguished between low- and high-cohesion texts. These results provide a validation of Coh-Metrix, thereby paving the way for its use by researchers in cognitive science, discourse processes, and education, as well as for textbook writers, professionals in instructional design, and instructors. Notes aEfficiency refers to performance and reaction time. bSkill refers to reading skill. cCould not be computed because data provided in the article were all correlational. dInference test refers to open-ended inference questions answered while referring to the text. eQuestions are open-ended.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆林北发布了新的文献求助10
1秒前
晴天发布了新的文献求助10
1秒前
李健应助粱乘风采纳,获得10
2秒前
残幻应助香蕉外绣采纳,获得10
3秒前
野性的凡发布了新的文献求助10
6秒前
6秒前
房孝佟完成签到 ,获得积分10
6秒前
8秒前
8秒前
9秒前
9秒前
dudu10000完成签到,获得积分10
10秒前
恩恩完成签到,获得积分10
11秒前
赘婿应助大力的含卉采纳,获得10
12秒前
莫生完成签到,获得积分10
12秒前
YY发布了新的文献求助20
12秒前
季宇发布了新的文献求助10
12秒前
禾斗发布了新的文献求助10
12秒前
13秒前
ornot君君发布了新的文献求助10
13秒前
zhangtong关注了科研通微信公众号
13秒前
hp571完成签到,获得积分10
13秒前
猪猪hero应助致行采纳,获得10
14秒前
964230130发布了新的文献求助10
14秒前
研友_8KAOBn完成签到,获得积分10
15秒前
晴天完成签到,获得积分10
15秒前
CipherSage应助扣子采纳,获得10
16秒前
粱乘风发布了新的文献求助10
18秒前
ding应助季宇采纳,获得10
18秒前
20秒前
21秒前
香蕉外绣完成签到,获得积分10
21秒前
22秒前
思源应助ornot君君采纳,获得10
25秒前
徐rl完成签到 ,获得积分10
26秒前
陆林北完成签到,获得积分10
26秒前
可爱的函函应助缓慢平蓝采纳,获得10
28秒前
Yi1完成签到,获得积分20
28秒前
29秒前
微眠发布了新的文献求助20
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738204
求助须知:如何正确求助?哪些是违规求助? 3281655
关于积分的说明 10026312
捐赠科研通 2998455
什么是DOI,文献DOI怎么找? 1645277
邀请新用户注册赠送积分活动 782723
科研通“疑难数据库(出版商)”最低求助积分说明 749891