Pharmacokinetics and Pharmacodynamics in Clinical Use of Scopolamine

药代动力学 药理学 止吐药 阿托品 氢溴酸东莨菪碱 毒蕈碱乙酰胆碱受体 副交感神经溶解性 药效学 抗胆碱能 口服 医学 麻醉 化学 术前用药 呕吐 内科学 受体
作者
Ulf Renner,Reinhard Oertel,Wilhelm Kirch
出处
期刊:Therapeutic Drug Monitoring [Ovid Technologies (Wolters Kluwer)]
卷期号:27 (5): 655-665 被引量:267
标识
DOI:10.1097/01.ftd.0000168293.48226.57
摘要

The alkaloid L-(−)-scopolamine [L-(−)-hyoscine] competitively inhibits muscarinic receptors for acetylcholine and acts as a nonselective muscarinic antagonist, producing both peripheral antimuscarinic properties and central sedative, antiemetic, and amnestic effects. The parasympatholytic scopolamine, structurally very similar to atropine (racemate of hyoscyamine), is used in conditions requiring decreased parasympathetic activity, primarily for its effect on the eye, gastrointestinal tract, heart, and salivary and bronchial secretion glands, and in special circumstances for a CNS action. Therefore, scopolamine is most suitable for premedication before anesthesia and for antiemetic effects. This alkaloid is the most effective single agent to prevent motion sickness. Scopolamine was the first drug to be made commercially available in a transdermal therapeutic system (TTS-patch) delivering alkaloid. Recently, pharmacokinetic data on scopolamine in different biozlogic matrices were obtained most efficiently using liquid chromatographic-tandem mass spectrometric (LC-MS/MS) or gas chromatography online coupled to mass spectrometry. Pharmacokinetic parameters are dependent on the dosage form (oral dose, tablets; parenteral application; IV infusion; SC and IM injection). Scopolamine has a limited bioavailability if orally administered. The maximum drug concentration occurs approximately 0.5 hours after oral administration. Because only 2.6% of nonmetabolized L-(−)-scopolamine is excreted in urine, a first-pass metabolism is suggested to occur after oral administration of scopolamine. Because of its short half-life in plasma and dose-dependent adverse effects (in particular hallucinations and the less serious reactions, eg, vertigo, dry mouth, drowsiness), the clinical use of scopolamine administered orally or parenterally is limited. To minimize the relatively high incidence of side effects, the transdermal dosage form has been developed. The commercially available TTS-patch contains a 1.5-mg drug reservoir and a priming dose (140 μg) to reach the steady-state concentration of scopolamine quickly. The patch releases 0.5 mg alkaloid over a period of 3 days (releasing rate 5 μg/h). Following the transdermal application of scopolamine, the plasma concentrations of the drug indicate major interindividual variations. Peak plasma concentrations (Cmax) of approximately 100 pg/mL (range 11-240 pg/mL) of the alkaloid are reached after about 8 hours and achieve steady state. During a period of 72 hours the plaster releases scopolamine, so constantly high plasma levels (concentration range 56-245 pg/mL) are obtained, followed by a plateau of urinary scopolamine excretion. Although scopolamine has been used in clinical practice for many years, data concerning its metabolism and the renal excretion in man are limited. After incubation with β-glucuronidase and sulfatase, the recovery of scopolamine in human urine increased from 3% to approximately 30% of the drug dose (intravenously administered). According to these results from enzymatic hydrolysis of scopolamine metabolites, the glucuronide conjugation of scopolamine could be the relevant pathway in healthy volunteers. However, scopolamine metabolism in man has not been verified stringently. An elucidation of the chemical structures of the metabolites extracted from human urine is still lacking. Scopolamine has been shown to undergo an oxidative demethylation during incubation with CYP3A (cytochrome P-450 subfamily). To inhibit the CYP3A located in the intestinal mucosa, components of grapefruit juice are very suitable. When scopolamine was administered together with 150 mL grapefruit juice, the alkaloid concentrations continued to increase, resulting in an evident prolongation of tmax (59.5 ± 25.0 minutes; P < 0.001). The AUC0-24h values of scopolamine were higher during the grapefruit juice period. They reached approximately 142% of the values associated with the control group (P < 0.005). Consequently, the related absolute bioavailabilities (range 6% to 37%) were significantly higher than the corresponding values of the drug orally administered together with water (range 3% to 27%). The effect of the alkaloid on quantitative electroencephalogram (qEEG) and cognitive performance correlated with pharmacokinetics was shown in studies with healthy volunteers. From pharmacokinetic-pharmacodynamic modeling techniques, a direct correlation between serum concentrations of scopolamine and changes in total power in α-frequency band (EEG) in healthy volunteers was provided. The alkaloid readily crosses the placenta. Therefore, scopolamine should be administered to pregnant women only under observation. The drug is compatible with nursing and is considered to be nonteratogenic. In conclusion, scopolamine is used for premedication in anesthesia and for the prevention of nausea and vomiting associated with motion sickness. Pharmacokinetics and pharmacodynamics of scopolamine depend on the dosage form. Effects on different cognitive functions have been extensively documented.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助米米采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
思源应助陈志强采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
FashionBoy应助沉默太清采纳,获得10
1秒前
追寻飞松完成签到,获得积分10
1秒前
2秒前
无极微光应助科研通管家采纳,获得20
2秒前
一支蕉完成签到,获得积分10
2秒前
进击的PhD应助科研通管家采纳,获得20
2秒前
大头发布了新的文献求助10
2秒前
2秒前
好好发布了新的文献求助10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
2秒前
Twonej应助科研通管家采纳,获得30
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
思源应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得50
3秒前
3秒前
进击的PhD应助科研通管家采纳,获得20
3秒前
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
祺yix发布了新的文献求助20
3秒前
所所应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648