Machine Learning Based Predictive Modeling of Machining Induced Microhardness and Grain Size in Ti–6Al–4V Alloy

材料科学 机械加工 压痕硬度 粒度 冶金 合金 钛合金 微观结构
作者
Yiğit M. Arısoy,Tuğrul Özel
出处
期刊:Materials and Manufacturing Processes [Informa]
卷期号:30 (4): 425-433 被引量:51
标识
DOI:10.1080/10426914.2014.961476
摘要

Titanium and its alloys are today used in many industries including aerospace, automotive, and medical device and among those Ti–6Al–4 V alloy is the most suitable because of favorable properties such as high strength-to-weight ratio, toughness, superb corrosion resistance, and bio-compatibility. Machining induced surface integrity and microstructure alterations size play a critical role in product fatigue life and reliability. Cutting tool geometry, coating type, and cutting conditions can affect surface and subsurface hardness as well as grain size. In this paper, predictions of machining induced microhardness and grain size are performed by using 3D finite element (FE) simulations of machining and machine learning models. Microhardness and microstructure of machined surfaces of Ti–6Al–4 V are investigated. Hardness measurements are conducted at elevated temperatures to develop a predictive model by utilizing FE-based temperature fields for hardness profile. Measured hardness, grain size, and fractions are utilized in developing predictive models. Predicted microhardness profiles and grain sizes are then utilized in understanding the effect of machining parameters such as cutting speed, tool coating, and edge radius on the surface integrity. Optimization using genetic algorithms is performed to identify most favorable tool edge radius and cutting conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮应助爱哭的小女孩采纳,获得10
1秒前
汉堡包应助爱哭的小女孩采纳,获得10
1秒前
soso1010发布了新的文献求助10
1秒前
1秒前
传奇3应助酷酷珠采纳,获得10
1秒前
1秒前
1秒前
李梦发布了新的文献求助10
2秒前
研友_8Y05PZ发布了新的文献求助10
2秒前
乐乐应助有魅力荟采纳,获得10
2秒前
2秒前
jam发布了新的文献求助10
3秒前
3秒前
封夏山发布了新的文献求助10
3秒前
花花发布了新的文献求助10
3秒前
4秒前
小走发布了新的文献求助10
4秒前
4秒前
oyly完成签到 ,获得积分10
5秒前
5秒前
5秒前
6秒前
壮观果汁完成签到 ,获得积分10
6秒前
枍枫发布了新的文献求助10
6秒前
外向沅完成签到,获得积分10
7秒前
虚幻的凌文完成签到,获得积分10
8秒前
3131879775发布了新的文献求助10
8秒前
于跃发布了新的文献求助10
9秒前
9秒前
renlangfen发布了新的文献求助10
10秒前
10秒前
龙猫抱枕完成签到,获得积分10
10秒前
狂野的寻凝完成签到,获得积分10
10秒前
全麦面包完成签到,获得积分10
11秒前
蘑菇xixi发布了新的文献求助10
11秒前
wyx发布了新的文献求助10
11秒前
能干的树叶完成签到,获得积分10
11秒前
12秒前
13秒前
华仔应助renlangfen采纳,获得10
13秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312954
求助须知:如何正确求助?哪些是违规求助? 2945312
关于积分的说明 8524570
捐赠科研通 2621088
什么是DOI,文献DOI怎么找? 1433321
科研通“疑难数据库(出版商)”最低求助积分说明 664936
邀请新用户注册赠送积分活动 650325