Antimicrobial Peptides with Stability toward Tryptic Degradation

三肽 化学 胰蛋白酶 抗菌肽 阳离子聚合 蛋白水解酶 等温滴定量热法 组合化学 生物化学 立体化学 有机化学
作者
Johan Svenson,Wenche Stensen,Bjørn Olav Brandsdal,Bengt Erik Haug,Johnny Monrad,John S. Svendsen
出处
期刊:Biochemistry [American Chemical Society]
卷期号:47 (12): 3777-3788 被引量:131
标识
DOI:10.1021/bi7019904
摘要

The inherent instability of peptides toward metabolic degradation is an obstacle on the way toward bringing potential peptide drugs onto the market. Truncation can be one way to increase the proteolytic stability of peptides, and in the present study the susceptibility against trypsin, which is one of the major proteolytic enzymes in the gastrointestinal tract, was investigated for several short and diverse libraries of promising cationic antimicrobial tripeptides. Quite surprisingly, trypsin was able to cleave very small cationic antimicrobial peptides at a substantial rate. Isothermal titration calorimetry studies revealed stoichiometric interactions between selected peptides and trypsin, with dissociation constants ranging from 1 to 20 microM. Introduction of hydrophobic C-terminal amide modifications and likewise bulky synthetic side chains on the central amino acid offered an effective way to increased half-life in our assays. Analysis of the degradation products revealed that the location of cleavage changed when different end-capping strategies were employed to increase the stability and the antimicrobial potency. This suggests that trypsin prefers a bulky hydrophobic element in S1' in addition to a positively charged side chain in S1 and that this binding dictates the mode of cleavage for these substrates. Molecular modeling studies supported this hypothesis, and it is shown that small alterations of the tripeptide result in two very different modes of trypsin binding and degradation. The data presented allows for the design of stable cationic antibacterial peptides and/or peptidomimetics based on several novel design principles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
代沁完成签到,获得积分10
1秒前
2秒前
5秒前
6秒前
愉快书琴完成签到,获得积分10
6秒前
慕青应助甜蜜的马里奥采纳,获得10
6秒前
JamesPei应助人间烟火采纳,获得10
8秒前
9秒前
9秒前
sochiyuen完成签到,获得积分10
10秒前
Eazin完成签到,获得积分10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
慕青应助小新同学采纳,获得10
13秒前
13秒前
13秒前
潇洒松发布了新的文献求助10
13秒前
14秒前
14秒前
风清扬发布了新的文献求助20
14秒前
15秒前
jerry完成签到,获得积分10
16秒前
李健的小迷弟应助dd采纳,获得10
16秒前
17秒前
17秒前
皓月孤烟完成签到,获得积分10
17秒前
zxyan发布了新的文献求助10
17秒前
sandy完成签到,获得积分10
18秒前
abandon发布了新的文献求助10
18秒前
19秒前
19秒前
xwl发布了新的文献求助10
19秒前
20秒前
xiuru发布了新的文献求助10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
Rming完成签到,获得积分10
20秒前
所所应助科研通管家采纳,获得10
20秒前
桐桐应助科研通管家采纳,获得10
20秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743323
求助须知:如何正确求助?哪些是违规求助? 5413456
关于积分的说明 15347310
捐赠科研通 4884139
什么是DOI,文献DOI怎么找? 2625595
邀请新用户注册赠送积分活动 1574486
关于科研通互助平台的介绍 1531380