Antimicrobial Peptides with Stability toward Tryptic Degradation

三肽 化学 胰蛋白酶 抗菌肽 阳离子聚合 蛋白水解酶 等温滴定量热法 组合化学 生物化学 立体化学 有机化学
作者
Johan Svenson,Wenche Stensen,Bjørn Olav Brandsdal,Bengt Erik Haug,Johnny Monrad,John S. Svendsen
出处
期刊:Biochemistry [American Chemical Society]
卷期号:47 (12): 3777-3788 被引量:131
标识
DOI:10.1021/bi7019904
摘要

The inherent instability of peptides toward metabolic degradation is an obstacle on the way toward bringing potential peptide drugs onto the market. Truncation can be one way to increase the proteolytic stability of peptides, and in the present study the susceptibility against trypsin, which is one of the major proteolytic enzymes in the gastrointestinal tract, was investigated for several short and diverse libraries of promising cationic antimicrobial tripeptides. Quite surprisingly, trypsin was able to cleave very small cationic antimicrobial peptides at a substantial rate. Isothermal titration calorimetry studies revealed stoichiometric interactions between selected peptides and trypsin, with dissociation constants ranging from 1 to 20 microM. Introduction of hydrophobic C-terminal amide modifications and likewise bulky synthetic side chains on the central amino acid offered an effective way to increased half-life in our assays. Analysis of the degradation products revealed that the location of cleavage changed when different end-capping strategies were employed to increase the stability and the antimicrobial potency. This suggests that trypsin prefers a bulky hydrophobic element in S1' in addition to a positively charged side chain in S1 and that this binding dictates the mode of cleavage for these substrates. Molecular modeling studies supported this hypothesis, and it is shown that small alterations of the tripeptide result in two very different modes of trypsin binding and degradation. The data presented allows for the design of stable cationic antibacterial peptides and/or peptidomimetics based on several novel design principles.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Nov发布了新的文献求助10
刚刚
panpan完成签到,获得积分10
刚刚
迷路小丸子完成签到,获得积分10
1秒前
山山而川发布了新的文献求助10
2秒前
tumankol发布了新的文献求助10
2秒前
华仔应助Shirky采纳,获得20
2秒前
3秒前
Wen完成签到,获得积分10
3秒前
胡泽莉完成签到,获得积分10
4秒前
vae完成签到,获得积分10
4秒前
香蕉觅云应助梦露采纳,获得10
4秒前
yuanyuan完成签到 ,获得积分10
5秒前
ypcsjj完成签到,获得积分10
5秒前
晫猗发布了新的文献求助10
7秒前
7秒前
江苏吴世勋完成签到,获得积分10
7秒前
Ava应助山山而川采纳,获得10
7秒前
8秒前
小马甲应助狂野妙菱采纳,获得10
8秒前
大龙哥886应助vae采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
跳跃的明雪完成签到 ,获得积分10
9秒前
9秒前
落寞依玉完成签到,获得积分10
9秒前
金子完成签到,获得积分10
11秒前
12秒前
风中尔蝶发布了新的文献求助30
12秒前
Fransic发布了新的文献求助10
12秒前
12秒前
JJlv完成签到,获得积分10
12秒前
CodeCraft应助团子采纳,获得10
13秒前
沙漠水手发布了新的文献求助10
13秒前
tinna完成签到,获得积分10
13秒前
小龙发布了新的文献求助40
14秒前
可爱的函函应助Nov采纳,获得10
15秒前
16秒前
17秒前
taipingyang完成签到,获得积分10
17秒前
安平发布了新的文献求助10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660407
求助须知:如何正确求助?哪些是违规求助? 4833752
关于积分的说明 15090568
捐赠科研通 4819045
什么是DOI,文献DOI怎么找? 2578992
邀请新用户注册赠送积分活动 1533551
关于科研通互助平台的介绍 1492304