Pathway engineering for phenolic acid accumulations in Salvia miltiorrhiza by combinational genetic manipulation

苯丙素 丹参 咖啡酸 转录组 异位表达 表型 化学 拟南芥 代谢途径 生物化学 生物 基因 生物合成 抗氧化剂 基因表达 中医药 病理 替代医学 医学 突变体
作者
Yuan Zhang,Yaping Yan,Yucui Wu,Wenping Hua,Chen Chen,Qian Ge,Zhezhi Wang
出处
期刊:Metabolic Engineering [Elsevier]
卷期号:21: 71-80 被引量:70
标识
DOI:10.1016/j.ymben.2013.10.009
摘要

To produce beneficial phenolic acids for medical and commercial purposes, researchers are interested in improving the normally low levels of salvianolic acid B (Sal B) produced by Salvia miltiorrhiza. Here, we present a strategy of combinational genetic manipulation to enrich the precursors available for Sal B biosynthesis. This approach, involving the lignin pathway, requires simultaneous, ectopic expression of an Arabidopsis Production of Anthocyanin Pigment 1 transcription factor (AtPAP1) plus co-suppression of two endogenous, key enzyme genes: cinnamoyl-CoA reductase (SmCCR) and caffeic acid O-methyltransferase (SmCOMT). Compared with the untransformed control, we achieved a greater accumulation of Sal B (up to 3-fold higher) along with a reduced lignin concentration. This high-Sal B phenotype was stable in roots during vegetative growth and was closely correlated with increased antioxidant capacity for the corresponding plant extracts. Although no outward change in phenotype was apparent, we characterized the molecular phenotype through integrated analysis of transcriptome and metabolome profiling. Our results demonstrated the far-reaching consequences of phenolic pathway perturbations on carbohydrate metabolism, respiration, photo-respiration, and stress responses. This report is the first to describe the production of valuable end products through combinational genetic manipulation in S. miltiorrhiza plants. Our strategy will be effective in efforts to metabolically engineer multi-branch pathway(s), such as the phenylpropanoid pathway, in economically significant medicinal plants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fire完成签到 ,获得积分10
刚刚
Clarence应助虚心半莲采纳,获得10
刚刚
li完成签到,获得积分20
刚刚
爱科研的光催人完成签到,获得积分10
刚刚
耿倩倩发布了新的文献求助10
1秒前
筋筋子完成签到,获得积分10
1秒前
访云完成签到 ,获得积分10
1秒前
ipan918完成签到,获得积分10
1秒前
shouren_完成签到,获得积分10
2秒前
嘟嘟发布了新的文献求助10
2秒前
3秒前
wongcheng完成签到,获得积分10
3秒前
wrk完成签到,获得积分10
3秒前
凤凤发布了新的文献求助10
4秒前
Orange应助landewen采纳,获得10
4秒前
AMOVO发布了新的文献求助10
5秒前
cen发布了新的文献求助10
5秒前
5秒前
木昜完成签到,获得积分10
5秒前
curtisness应助Yeah采纳,获得10
6秒前
6秒前
hihao完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助Layli采纳,获得10
7秒前
稳重的若雁应助Layli采纳,获得10
7秒前
司南应助Layli采纳,获得10
7秒前
拼搏问薇完成签到 ,获得积分10
8秒前
curtisness应助白苏采纳,获得10
9秒前
9秒前
hihao发布了新的文献求助10
9秒前
有川洋一完成签到 ,获得积分10
10秒前
10秒前
ddd发布了新的文献求助10
10秒前
我是老大应助Tomice采纳,获得10
13秒前
奋斗人雄完成签到,获得积分10
14秒前
14秒前
能干的麦片完成签到 ,获得积分10
15秒前
852应助米六采纳,获得10
15秒前
旺仔完成签到,获得积分10
16秒前
思源应助活力寒梅采纳,获得10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137260
求助须知:如何正确求助?哪些是违规求助? 2788392
关于积分的说明 7785921
捐赠科研通 2444458
什么是DOI,文献DOI怎么找? 1299916
科研通“疑难数据库(出版商)”最低求助积分说明 625650
版权声明 601023