MZ twinning: chance or determinism? An essay in nonlinear dynamics (chaos)

随机性 吸引子 统计物理学 非线性系统 系列(地层学) 数学 相空间 李雅普诺夫指数 独生子女 极限环 极限(数学) 计算机科学 物理 数学分析 统计 量子力学 怀孕 古生物学 遗传学 生物
作者
Pierre Philippe
出处
期刊:Annals of Human Biology [Informa]
卷期号:21 (5): 423-434 被引量:1
标识
DOI:10.1080/03014469400003442
摘要

Classically, researchers considered monozygotic twinning (MZT) a random phenomenon. This paper tests the hypothesis with the aid of nonlinear dynamics techniques. The latter can tell true randomness from chance-like variation. Chaos, the endpoint of the threshold state of a nonlinear deterministic system, can mimic constrained randomness. From a practical standpoint, recognizing chaos in a time series data set means that the paradigmatic multifactorial model of causation is essentially ruled out. Specifically, time series of MZ, DZ, and single maternities were analysed. First, spectral analysis was used to uncover periodicities embedded in the series. Second, a singular value decomposition was undertaken to reduce noise from the series. Third, phase space attractors were drawn up that describe the 'asymptotic' trajectory of the system at any time. Results suggested that DZ, MZ, and single maternities shared a similar 32-year periodicity. Owing to two interwoven similar periodicities, the single-maternity cycle kinetics proved to be faster than that of DZ's. The MZ series was the only one to display secondary interacting harmonics, thus eliciting a rather unusual trajectory in the bidimensional phase space. The MZ time points were not spread in a haphazard fashion; on the contrary, a fine structure was present that did not reduce to a limit cycle such as the one characterizing the DZ- or the single-maternity trajectory. It was concluded that a complex nonlinear dynamic underlies MZ twinning. Therefore, calling for extrinsic causes to account for what appears to be random variation overtime would be pointless. MZ twinning should rather be traced to a limited number of intrinsic and deterministic interacting system components. The most likely candidates are presented and discussed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到,获得积分20
刚刚
刚刚
小熊出击发布了新的文献求助10
1秒前
PlanB完成签到,获得积分20
1秒前
1秒前
2秒前
小二郎应助梁晓雪采纳,获得10
3秒前
3秒前
4秒前
pgojpogk发布了新的文献求助10
4秒前
zxh发布了新的文献求助10
4秒前
共享精神应助JF123_采纳,获得10
5秒前
5秒前
李木槿发布了新的文献求助10
5秒前
好好应助天月采纳,获得10
5秒前
无花果应助甩看文献采纳,获得10
5秒前
123456完成签到,获得积分10
6秒前
君子兰完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
6秒前
情怀应助积极的音响采纳,获得10
6秒前
6秒前
huangrui完成签到 ,获得积分10
6秒前
Lucas应助lsy采纳,获得10
6秒前
闫晓美完成签到,获得积分10
6秒前
小手冰凉完成签到,获得积分10
7秒前
小困困朱完成签到,获得积分20
7秒前
小青椒应助Jameszhuo采纳,获得10
7秒前
小二郎应助lidan_2008采纳,获得10
7秒前
8秒前
小糊涂仙发布了新的文献求助10
8秒前
8秒前
精明的蜗牛完成签到 ,获得积分10
8秒前
小航爱学习完成签到,获得积分10
8秒前
Hu发布了新的文献求助10
9秒前
许星星发布了新的文献求助10
9秒前
if奖完成签到,获得积分10
9秒前
lxj完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5727674
求助须知:如何正确求助?哪些是违规求助? 5309608
关于积分的说明 15311894
捐赠科研通 4875130
什么是DOI,文献DOI怎么找? 2618553
邀请新用户注册赠送积分活动 1568241
关于科研通互助平台的介绍 1524919