Using Allan variance to evaluate the relative accuracy on different time scales of GNSS/INS systems

全球导航卫星系统应用 艾伦方差 计算机科学 卫星系统 惯性导航系统 期限(时间) 导航系统 卡尔曼滤波器 差异(会计) 精度稀释 卫星导航 全球定位系统 算法 遥感 实时计算 方向(向量空间) 人工智能 统计 数学 电信 地理 标准差 会计 物理 几何学 量子力学 业务
作者
Quan Zhang,Xiaoji Niu,Qijin Chen,Hongping Zhang,Chuang Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:24 (8): 085006-085006 被引量:29
标识
DOI:10.1088/0957-0233/24/8/085006
摘要

The integration of the Global Navigation Satellite System (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information using a data fusing algorithm such as a Kalman filter. There has been much interest in the absolute accuracy with dominant components of mid-term and long-term errors in current research works related to the GNSS/INS navigation systems, whereas few research works focus on the relative accuracy on different time scales. However, new applications of GNSS/INS integration, such as position and orientation system for mobile mapping systems and the GNSS/INS deeply-coupled receiver, require the relative accuracy on different time scales, especially that of the short-term accuracy. This paper raises the importance of the short-term accuracy of the GNSS/INS systems in certain applications. Current methods to evaluate the navigation accuracy are mainly to provide some statistical values that can represent the overall error level (e.g., RMS), but cannot show the relative accuracy. Allan variance is a method of representing root mean square (RMS) random drift error as a function of average time. An Allan variance analysis method is proposed in this paper to evaluate the relative accuracy on different time scales of GNSS/INS systems. The feasibility of the idea was verified by the road test results of different grades of GNSS/INS systems. The results show that Allan variance can give the levels of the navigation accuracy of the GNSS/INS systems on different time scales in an effective way, especially for the short-term accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研助理发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
Eliauk完成签到,获得积分10
1秒前
ycp完成签到,获得积分10
2秒前
遇疯儿完成签到,获得积分10
3秒前
3秒前
刘佳恬发布了新的文献求助10
3秒前
聪明的梦松完成签到,获得积分20
3秒前
南音发布了新的文献求助10
4秒前
4秒前
香蕉觅云应助鳗鱼鞋垫采纳,获得10
4秒前
蔺铁身完成签到,获得积分20
4秒前
wenmu发布了新的文献求助10
5秒前
5秒前
华仔应助Alpha采纳,获得10
5秒前
粗暴的达完成签到,获得积分10
6秒前
Lucas应助wwy采纳,获得10
6秒前
科研通AI6应助向阳采纳,获得10
6秒前
风趣思山完成签到,获得积分10
6秒前
fsz发布了新的文献求助10
6秒前
遇疯儿发布了新的文献求助10
6秒前
NexusExplorer应助山月采纳,获得10
7秒前
希望天下0贩的0应助xcy采纳,获得10
8秒前
Mic应助科研通管家采纳,获得10
8秒前
wxyshare应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
yznfly应助科研通管家采纳,获得50
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
Mic应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
BowieHuang应助科研通管家采纳,获得10
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
9秒前
慕青应助科研通管家采纳,获得10
9秒前
打打应助科研通管家采纳,获得10
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680