粒子群优化
多群优化
计算机科学
水准点(测量)
进化计算
人工神经网络
人工智能
群体行为
元启发式
任务(项目管理)
实施
数学优化
群机器人
进化算法
计算
机器人
群体智能
算法
机器学习
数学
工程类
程序设计语言
系统工程
地理
大地测量学
作者
Russell C. Eberhart,James Kennedy
标识
DOI:10.1109/mhs.1995.494215
摘要
The optimization of nonlinear functions using particle swarm methodology is described. Implementations of two paradigms are discussed and compared, including a recently developed locally oriented paradigm. Benchmark testing of both paradigms is described, and applications, including neural network training and robot task learning, are proposed. Relationships between particle swarm optimization and both artificial life and evolutionary computation are reviewed.
科研通智能强力驱动
Strongly Powered by AbleSci AI