P2Y受体
受体
内分泌学
基因剔除小鼠
内科学
生物
血管平滑肌
巨噬细胞
一氧化氮
刺激
脂多糖
磷酸肌醇
细胞外
一氧化氮合酶
细胞生物学
肌醇
生物化学
医学
嘌呤能受体
体外
平滑肌
作者
Isabelle Bar�,Pieter‐Jan Guns,Jessica Metallo,Dorothée Cammarata,Françoise Wilkin,Jean-Marie Boeynams,Hidde Bult,Bernard Robaye
出处
期刊:Molecular Pharmacology
[American Society for Pharmacology and Experimental Therapeutics]
日期:2008-06-03
卷期号:74 (3): 777-784
被引量:139
标识
DOI:10.1124/mol.108.046904
摘要
P2Y receptors are G-protein-coupled receptors activated by extracellular nucleotides. The P2Y6 receptor is selectively activated by UDP, and its transcript has been detected in numerous organs, including the spleen, thymus, intestine, blood leukocytes, and aorta. To investigate the biological functions of this receptor, we generated P2Y6-null mice by gene targeting. The P2Y6 knockout (KO) mice are viable and are not distinguishable from the wild-type (WT) mice in terms of growth or fertility. In thioglycollate-elicited macrophages, the production of inositol phosphate in response to UDP stimulation was lost, indicating that P2Y6 is the unique UDP-responsive receptor expressed by mouse macrophages. Furthermore, the amount of interleukin-6 and macrophage-inflammatory protein-2, but not tumor necrosis factor-α, released in response to lipopolysaccharide stimulation was significantly enhanced in the presence of UDP, and this effect was lost in the P2Y6 KO macrophages. The endothelium-dependent relaxation of the aorta by UDP was abolished in KO P2Y6 mice. The contractile effect of UDP on the aorta, observed when endothelial nitric-oxide synthase is blocked, was also abolished in P2Y6-null mice. In conclusion, we generated P2Y6-deficient mice and have shown that these mice have a defective response to UDP in macrophages, endothelial cells, and vascular smooth muscle cells. These observations might be relevant to several physiopathological conditions such as atherosclerosis or hypertension.
科研通智能强力驱动
Strongly Powered by AbleSci AI