Neural Network for Graphs: A Contextual Constructive Approach

计算机科学 建设性的 理论计算机科学 人工神经网络 人工智能 树遍历 概括性 过程(计算) 机器学习 算法 心理学 心理治疗师 操作系统
作者
Alessio Micheli
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 498-511 被引量:492
标识
DOI:10.1109/tnn.2008.2010350
摘要

This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你的小可爱突然出现完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
4秒前
4秒前
其华完成签到 ,获得积分10
4秒前
Lucas应助xdf采纳,获得10
5秒前
su发布了新的文献求助10
6秒前
郑石发布了新的文献求助10
7秒前
mhm发布了新的文献求助10
7秒前
FashionBoy应助亚琛求文献采纳,获得10
7秒前
8秒前
8秒前
Lucas应助木子采纳,获得10
9秒前
xyj6486完成签到,获得积分10
10秒前
tuanheqi应助务实的凝天采纳,获得50
10秒前
10秒前
小蘑菇应助xzy998采纳,获得10
11秒前
NeuroWhite完成签到,获得积分10
13秒前
1717发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
Mengyue应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
lalala应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
苹果丑应助科研通管家采纳,获得30
17秒前
田様应助科研通管家采纳,获得10
17秒前
17秒前
打打应助科研通管家采纳,获得10
18秒前
Mengyue应助科研通管家采纳,获得10
18秒前
慕青应助科研通管家采纳,获得30
18秒前
大个应助科研通管家采纳,获得10
18秒前
Ava应助科研通管家采纳,获得10
18秒前
lalala应助科研通管家采纳,获得10
18秒前
小二郎应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
情怀应助科研通管家采纳,获得10
18秒前
Jennie应助科研通管家采纳,获得30
18秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Encyclopedia of Computational Mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3269766
求助须知:如何正确求助?哪些是违规求助? 2909409
关于积分的说明 8348865
捐赠科研通 2579686
什么是DOI,文献DOI怎么找? 1402985
科研通“疑难数据库(出版商)”最低求助积分说明 655595
邀请新用户注册赠送积分活动 634856