亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Neural Network for Graphs: A Contextual Constructive Approach

计算机科学 建设性的 理论计算机科学 人工神经网络 人工智能 树遍历 概括性 过程(计算) 机器学习 算法 心理学 操作系统 心理治疗师
作者
Alessio Micheli
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 498-511 被引量:585
标识
DOI:10.1109/tnn.2008.2010350
摘要

This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
3秒前
hh发布了新的文献求助30
4秒前
搜集达人应助秋来九月八采纳,获得10
10秒前
18秒前
24秒前
Chocolat_Chaud完成签到,获得积分10
25秒前
刘冬晴发布了新的文献求助10
35秒前
又绿发布了新的文献求助10
41秒前
zhang完成签到,获得积分10
55秒前
非洲大象完成签到,获得积分10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
烟花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
无限暖暖发布了新的文献求助10
1分钟前
1分钟前
hh完成签到,获得积分10
1分钟前
JIANHUAN完成签到 ,获得积分10
1分钟前
泥娃娃完成签到,获得积分10
2分钟前
蔚欢完成签到 ,获得积分10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
xm完成签到 ,获得积分10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得20
3分钟前
3分钟前
3分钟前
TingtingGZ发布了新的文献求助10
3分钟前
zhjl完成签到,获得积分10
3分钟前
Li_KK完成签到,获得积分10
4分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502902
求助须知:如何正确求助?哪些是违规求助? 4598594
关于积分的说明 14464661
捐赠科研通 4532215
什么是DOI,文献DOI怎么找? 2483863
邀请新用户注册赠送积分活动 1467072
关于科研通互助平台的介绍 1439745