Neural Network for Graphs: A Contextual Constructive Approach

计算机科学 建设性的 理论计算机科学 人工神经网络 人工智能 树遍历 概括性 过程(计算) 机器学习 算法 心理学 心理治疗师 操作系统
作者
Alessio Micheli
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 498-511 被引量:585
标识
DOI:10.1109/tnn.2008.2010350
摘要

This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坦率的棉花糖完成签到,获得积分10
刚刚
1秒前
3391523540完成签到,获得积分20
1秒前
1秒前
Miku完成签到,获得积分10
2秒前
SciGPT应助shirui0906284采纳,获得10
5秒前
5秒前
yznfly应助Fjun采纳,获得50
6秒前
孙玉莹完成签到,获得积分10
6秒前
6秒前
ARIA发布了新的文献求助10
7秒前
9秒前
9秒前
ding应助xx采纳,获得30
9秒前
Elin完成签到,获得积分10
9秒前
11秒前
11秒前
Sherry发布了新的文献求助10
12秒前
wangyb发布了新的文献求助10
12秒前
英俊的铭应助小石头采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
可爱的函函应助lonely采纳,获得10
13秒前
缥缈的背包完成签到,获得积分10
13秒前
上官老师完成签到,获得积分10
13秒前
酷波er应助elephantknight采纳,获得10
13秒前
13秒前
迷路冬卉发布了新的文献求助10
14秒前
77MM完成签到,获得积分10
14秒前
Jared应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
15秒前
无名应助科研通管家采纳,获得10
15秒前
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
15秒前
所所应助科研通管家采纳,获得10
15秒前
15秒前
王丽娟应助科研通管家采纳,获得10
15秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776