Neural Network for Graphs: A Contextual Constructive Approach

计算机科学 建设性的 理论计算机科学 人工神经网络 人工智能 树遍历 概括性 过程(计算) 机器学习 算法 心理学 操作系统 心理治疗师
作者
Alessio Micheli
出处
期刊:IEEE Transactions on Neural Networks [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 498-511 被引量:585
标识
DOI:10.1109/tnn.2008.2010350
摘要

This paper presents a new approach for learning in structured domains (SDs) using a constructive neural network for graphs (NN4G). The new model allows the extension of the input domain for supervised neural networks to a general class of graphs including both acyclic/cyclic, directed/undirected labeled graphs. In particular, the model can realize adaptive contextual transductions, learning the mapping from graphs for both classification and regression tasks. In contrast to previous neural networks for structures that had a recursive dynamics, NN4G is based on a constructive feedforward architecture with state variables that uses neurons with no feedback connections. The neurons are applied to the input graphs by a general traversal process that relaxes the constraints of previous approaches derived by the causality assumption over hierarchical input data. Moreover, the incremental approach eliminates the need to introduce cyclic dependencies in the definition of the system state variables. In the traversal process, the NN4G units exploit (local) contextual information of the graphs vertices. In spite of the simplicity of the approach, we show that, through the compositionality of the contextual information developed by the learning, the model can deal with contextual information that is incrementally extended according to the graphs topology. The effectiveness and the generality of the new approach are investigated by analyzing its theoretical properties and providing experimental results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助llt采纳,获得10
1秒前
2秒前
2秒前
小涵发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
多多发布了新的文献求助10
5秒前
lhy发布了新的文献求助10
5秒前
Jasper应助小研不咸采纳,获得10
5秒前
6秒前
aaa发布了新的文献求助10
7秒前
秋葵拌饭完成签到,获得积分20
9秒前
111完成签到,获得积分10
9秒前
王东发布了新的文献求助10
9秒前
傻呵呵完成签到 ,获得积分20
10秒前
10秒前
yyy给yyy的求助进行了留言
10秒前
Zyzpkilly完成签到,获得积分10
11秒前
mr_chxb82发布了新的文献求助10
13秒前
15秒前
闪闪满天发布了新的文献求助10
15秒前
Chiara应助ahe采纳,获得20
15秒前
秋葵拌饭发布了新的文献求助10
16秒前
lyy完成签到 ,获得积分10
17秒前
plddd发布了新的文献求助10
17秒前
大个应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
大模型应助Dayon采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
Cheng应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
shhoing应助科研通管家采纳,获得10
19秒前
今后应助科研通管家采纳,获得30
19秒前
打打应助科研通管家采纳,获得10
19秒前
BowieHuang应助科研通管家采纳,获得10
19秒前
刘明坤完成签到 ,获得积分10
19秒前
tuanheqi应助科研通管家采纳,获得100
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
所所应助ZJY采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5548546
求助须知:如何正确求助?哪些是违规求助? 4633773
关于积分的说明 14632860
捐赠科研通 4575517
什么是DOI,文献DOI怎么找? 2509008
邀请新用户注册赠送积分活动 1485169
关于科研通互助平台的介绍 1456211