Subcellular pharmacokinetics and its potential for library focusing

亲脂性 数量结构-活动关系 膜透性 化学 广告 分子描述符 生物系统 药代动力学 计算生物学 立体化学 生物化学 药理学 生物 体外
作者
Štefan Baláž,Viera Lukáčová
出处
期刊:Journal of Molecular Graphics & Modelling [Elsevier BV]
卷期号:20 (6): 479-490 被引量:15
标识
DOI:10.1016/s1093-3263(01)00149-8
摘要

Subcellular pharmacokinetics (SP) optimizes biology-related factors in the design of libraries for high throughput screening by defining comparatively narrow ranges of properties (lipophilicity, amphiphilicity, acidity, reactivity, 3D-structural features) of the included compounds. The focusing ensures appropriate absorption, distribution, metabolism, excretion, and toxicity (ADMET) in those test biosystems, which are more complex than isolated receptors, and in humans. The SP deploys conceptual models that include transport and accumulation in a series of membranes, protein binding, hydrolysis, and other reactions with cell constituents. The kinetics of drug disposition is described as a non-linear disposition function of drug structure and properties. The SP capabilities are illustrated here using a model-based quantitative structure-activity relationship of toxicity of phenolic compounds against Tetrahymena pyriformis as dependent on lipophilicity and acidity. The resulting SP models clearly outperform empirical models in predictive ability outside the parameter space, as revealed by the leave-extremes-out cross-validation technique with omission of compounds beyond pre-defined lipophilicity and acidity ranges. The SP models do not change substantially if the parameters space is shrunk within some limits. In contrast, the shapes of empirical models vary widely depending upon the fraction of the data set used for their optimization. Once calibrated for a given biosystem, the SP models provide a detailed recipe for tailoring the drug properties to ensure optimum ADMET. The focusing is more accurate than with traditional empirical QSAR studies, assessment of drug-likeness, or the rules for identification of compounds with permeability problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2041完成签到,获得积分10
刚刚
1秒前
1秒前
搜集达人应助卡卡采纳,获得10
2秒前
完美世界应助谷粱紫槐采纳,获得10
2秒前
4秒前
轻松不言发布了新的文献求助10
4秒前
4秒前
年轻的怀柔完成签到,获得积分10
6秒前
脑洞疼应助姜怡采纳,获得10
7秒前
7秒前
领导范儿应助焦头鹅采纳,获得10
8秒前
喵喵牛完成签到,获得积分10
8秒前
GYJ完成签到 ,获得积分10
9秒前
DoLaso完成签到,获得积分10
10秒前
NexusExplorer应助ttqql采纳,获得10
11秒前
12秒前
棖0921发布了新的文献求助10
13秒前
青禾发布了新的文献求助10
13秒前
科研通AI5应助冷傲的凡波采纳,获得10
13秒前
不秃头完成签到,获得积分10
13秒前
华仔应助半柚采纳,获得10
14秒前
15秒前
distinct发布了新的文献求助10
16秒前
桐桐应助墨川采纳,获得30
16秒前
红叶发布了新的文献求助10
16秒前
浮生完成签到 ,获得积分10
17秒前
高高烨磊完成签到,获得积分10
18秒前
19秒前
简单的碧灵完成签到,获得积分10
20秒前
亲豆丁儿发布了新的文献求助10
21秒前
22秒前
小米完成签到,获得积分10
22秒前
科研通AI5应助半柚采纳,获得10
22秒前
23秒前
陶然共忘机完成签到,获得积分10
23秒前
科研小白完成签到 ,获得积分10
24秒前
ttqql发布了新的文献求助10
24秒前
LGLXQ发布了新的文献求助10
27秒前
FashionBoy应助老木虫采纳,获得10
27秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737792
求助须知:如何正确求助?哪些是违规求助? 3281460
关于积分的说明 10025330
捐赠科研通 2998147
什么是DOI,文献DOI怎么找? 1645122
邀请新用户注册赠送积分活动 782547
科研通“疑难数据库(出版商)”最低求助积分说明 749835