清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Learning from Past Treatments and Their Outcome Improves Prediction of In Vivo Response to Anti-HIV Therapy

Boosting(机器学习) 机器学习 判别式 人工智能 计算机科学 支持向量机 人类免疫缺陷病毒(HIV) 医学 计算生物学 免疫学 生物
作者
Hiroto Saigo,André Altmann,Jasmina Bogojeska,Fabian Müller,Sebastian Nowozin,Thomas Lengauer
出处
期刊:Statistical Applications in Genetics and Molecular Biology [De Gruyter]
卷期号:10 (1) 被引量:18
标识
DOI:10.2202/1544-6115.1604
摘要

Infections with the human immunodeficiency virus type 1 (HIV-1) are treated with combinations of drugs. Unfortunately, HIV responds to the treatment by developing resistance mutations. Consequently, the genome of the viral target proteins is sequenced and inspected for resistance mutations as part of routine diagnostic procedures for ensuring an effective treatment. For predicting response to a combination therapy, currently available computer-based methods rely on the genotype of the virus and the composition of the regimen as input. However, no available tool takes full advantage of the knowledge about the order of and the response to previously prescribed regimens. The resulting high-dimensional feature space makes existing methods difficult to apply in a straightforward fashion. The machine learning system proposed in this work, sequence boosting, is tailored to exploiting such high-dimensional information, i.e. the extraction of longitudinal features, by utilizing the recent advancements in data mining and boosting. When applied to predicting the latest treatment outcome for 3,759 treatment-experienced patients from the EuResist integrated database, sequence boosting achieved superior performance compared to SVMs with RBF kernels. Moreover, sequence boosting allows an easy access to the discriminative treatment information. Analysis of feature importance values provided by our model confirmed known facts regarding HIV treatment. For instance, application of potent and recently licensed drugs was beneficial for patients, and, conversely, the patient group that was subject to NRTI mono-therapies in the past had poor treatment perspectives today. Furthermore, our model revealed novel biological insights. More precisely, the combination of previously used drugs with their in vivo response is more informative than the information of previously used drugs alone. Using this information improves the performance of systems for predicting therapy outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Raul完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
11秒前
秋之晨完成签到,获得积分10
18秒前
30秒前
量子星尘发布了新的文献求助10
31秒前
秋之晨发布了新的文献求助10
34秒前
35秒前
量子星尘发布了新的文献求助10
50秒前
bc应助科研通管家采纳,获得10
52秒前
53秒前
睿睿斌斌完成签到,获得积分10
53秒前
lynn完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
LT完成签到 ,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
poppysss完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
飞云完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
dreamwalk完成签到 ,获得积分10
2分钟前
沉静香氛完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Johnson完成签到 ,获得积分10
2分钟前
2分钟前
新奇完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
三人水明完成签到 ,获得积分10
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661095
求助须知:如何正确求助?哪些是违规求助? 3222235
关于积分的说明 9744098
捐赠科研通 2931862
什么是DOI,文献DOI怎么找? 1605234
邀请新用户注册赠送积分活动 757798
科研通“疑难数据库(出版商)”最低求助积分说明 734549