氧化还原
电化学
阳离子聚合
密度泛函理论
材料科学
化学
锂(药物)
阴极
结晶学
化学物理
电极
无机化学
计算化学
物理化学
高分子化学
内分泌学
医学
作者
Paul E. Pearce,Arnaud J. Perez,Gwenaëlle Rousse,Matthieu Saubanère,Dmitry Batuk,Dominique Foix,Eric McCalla,Artem M. Abakumov,Gustaaf Van Tendeloo,Marie‐Liesse Doublet,Jean‐Marie Tarascon
出处
期刊:Nature Materials
[Springer Nature]
日期:2017-02-27
卷期号:16 (5): 580-586
被引量:307
摘要
Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g-1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e- per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n- redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI