已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline

基因 肠道菌群 代谢组 脯氨酸 生物化学 细菌 蛋白质细菌
作者
B. J. Levin,Yolanda Y. Huang,Spencer C. Peck,Y. Wei,A. Martínez-del Campo,Jonathan A. Marks,Eric A. Franzosa,Curtis Huttenhower,Emily P. Balskus
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:355 (6325) 被引量:83
标识
DOI:10.1126/science.aai8386
摘要

INTRODUCTION The microbes that live in and on our bodies (the human microbiome) profoundly affect human health and disease. For example, within the lower gastrointestinal tract, microbes employ powerful enzymatic chemistry to access recalcitrant nutrients and generate metabolites that mediate interactions with host cells. Given the vast amounts of available sequencing data from human microbiomes, we know surprisingly little about the precise mechanisms by which these activities influence human biology. This knowledge gap arises in part from our poor understanding of microbial enzymes and metabolic processes. Collectively, the genes present in microbiomes (metagenomes) encode millions of uncharacterized enzymes, and approaches are needed to connect these genes to biochemical functions. RATIONALE Efforts to identify the microbial activities encoded within metagenomes (functional profiling) have largely focused on assigning protein sequences found in these data sets to overarching processes (e.g., “vitamin biosynthesis”) or large enzyme superfamilies whose members carry out many different chemical reactions. These methods therefore provide limited information about specific enzymes of interest and cannot easily differentiate superfamily members with known and unknown functions. Addressing this problem requires incorporating a mechanistic understanding of how amino acid sequence influences enzymatic activity into metagenomic analyses. We envisioned developing a “chemically guided” functional profiling strategy that would use protein sequence similarity network (SSN) analysis to distinguish functionally distinct members of large enzyme superfamilies and integrate this information into quantitative metagenomics. This method would not only quantify different types of enzymes in metagenomic and metatranscriptomic data sets, but also pinpoint enzymes of unknown function in communities, prioritizing them for further study on the basis of their abundance and distribution. We initially applied this workflow to profile the glycyl radical enzyme (GRE) superfamily, which is one of the most enriched protein families in the human gut microbiome. GREs are O 2 -sensitive enzymes that catalyze key transformations in anaerobic microbial metabolism, including carbohydrate utilization and DNA synthesis. Although the activities of certain gut microbial GREs have been connected to heart, liver, and kidney diseases, as well as autism, numerous members of this superfamily have not yet been biochemically characterized. RESULTS We determined the abundance of individual types of GREs in 378 metagenomes from healthy humans, including two aerobic body sites (vagina and skin), three microaerobic body sites (tongue, inner cheek, and dental plaque), and one anaerobic body site (gut). The human gut microbiome contained the largest number of distinct GREs, many of which have unknown functions. Our analysis provided new information about known GRE-mediated activities, including production of the disease-associated metabolites trimethylamine and p -cresol. In vitro studies of abundant, uncharacterized GREs from the human gut revealed that radical-based dehydration chemistry is widespread in this environment and led to the discovery of trans -4-hydroxy-l-proline (Hyp) dehydratase. This enzyme enables gut commensals and human pathogens like Clostridium difficile to metabolize Hyp, a nonproteinogenic amino acid that is rare in bacteria but is an abundant posttranslational modification in eukaryotes. The universal distribution of this activity in human gut microbiomes suggests that it plays an important role in this habitat, setting the stage for future hypothesis-driven research. CONCLUSION By accurately identifying enzymes present in microbial communities, this workflow allows ecological context to inform enzyme characterization, uncovering widespread but previously unappreciated metabolic activities. We are now poised to apply this strategy to examine various patient populations, additional protein superfamilies, and other microbiomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
frr完成签到 ,获得积分10
刚刚
刚刚
陈尹蓝完成签到 ,获得积分10
刚刚
大意的映天完成签到 ,获得积分10
1秒前
白读书完成签到 ,获得积分10
2秒前
Jasper应助涨涨涨采纳,获得10
5秒前
小小小发布了新的文献求助10
5秒前
5秒前
yff完成签到,获得积分10
5秒前
Shan完成签到 ,获得积分10
6秒前
闪闪的炳发布了新的文献求助10
6秒前
wdwyyds完成签到,获得积分10
7秒前
昵称完成签到,获得积分10
8秒前
syz完成签到,获得积分10
8秒前
merry6669完成签到 ,获得积分10
10秒前
SciGPT应助yff采纳,获得10
10秒前
11秒前
12秒前
13秒前
无花果应助小小小采纳,获得10
16秒前
16秒前
天天快乐应助erdongsir采纳,获得10
17秒前
涨涨涨发布了新的文献求助10
17秒前
是多少完成签到,获得积分10
18秒前
英姑应助Amy采纳,获得10
18秒前
18秒前
Crisp完成签到 ,获得积分10
20秒前
21秒前
闪闪的炳完成签到,获得积分10
21秒前
舒适的梦玉完成签到,获得积分10
21秒前
21秒前
simple1完成签到 ,获得积分10
22秒前
23秒前
Amy完成签到,获得积分10
25秒前
风中的以寒完成签到,获得积分10
25秒前
超人Steiner完成签到 ,获得积分10
25秒前
26秒前
ced发布了新的文献求助10
27秒前
兴奋的若菱完成签到 ,获得积分10
27秒前
勤奋的猫咪完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4973068
求助须知:如何正确求助?哪些是违规求助? 4228832
关于积分的说明 13171057
捐赠科研通 4017312
什么是DOI,文献DOI怎么找? 2198263
邀请新用户注册赠送积分活动 1210940
关于科研通互助平台的介绍 1125739