A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-l-proline

基因 肠道菌群 代谢组 脯氨酸 生物化学 细菌 蛋白质细菌
作者
B. J. Levin,Yolanda Y. Huang,Spencer C. Peck,Y. Wei,A. Martínez-del Campo,Jonathan A. Marks,Eric A. Franzosa,Curtis Huttenhower,Emily P. Balskus
出处
期刊:Science [American Association for the Advancement of Science]
卷期号:355 (6325) 被引量:83
标识
DOI:10.1126/science.aai8386
摘要

INTRODUCTION The microbes that live in and on our bodies (the human microbiome) profoundly affect human health and disease. For example, within the lower gastrointestinal tract, microbes employ powerful enzymatic chemistry to access recalcitrant nutrients and generate metabolites that mediate interactions with host cells. Given the vast amounts of available sequencing data from human microbiomes, we know surprisingly little about the precise mechanisms by which these activities influence human biology. This knowledge gap arises in part from our poor understanding of microbial enzymes and metabolic processes. Collectively, the genes present in microbiomes (metagenomes) encode millions of uncharacterized enzymes, and approaches are needed to connect these genes to biochemical functions. RATIONALE Efforts to identify the microbial activities encoded within metagenomes (functional profiling) have largely focused on assigning protein sequences found in these data sets to overarching processes (e.g., “vitamin biosynthesis”) or large enzyme superfamilies whose members carry out many different chemical reactions. These methods therefore provide limited information about specific enzymes of interest and cannot easily differentiate superfamily members with known and unknown functions. Addressing this problem requires incorporating a mechanistic understanding of how amino acid sequence influences enzymatic activity into metagenomic analyses. We envisioned developing a “chemically guided” functional profiling strategy that would use protein sequence similarity network (SSN) analysis to distinguish functionally distinct members of large enzyme superfamilies and integrate this information into quantitative metagenomics. This method would not only quantify different types of enzymes in metagenomic and metatranscriptomic data sets, but also pinpoint enzymes of unknown function in communities, prioritizing them for further study on the basis of their abundance and distribution. We initially applied this workflow to profile the glycyl radical enzyme (GRE) superfamily, which is one of the most enriched protein families in the human gut microbiome. GREs are O 2 -sensitive enzymes that catalyze key transformations in anaerobic microbial metabolism, including carbohydrate utilization and DNA synthesis. Although the activities of certain gut microbial GREs have been connected to heart, liver, and kidney diseases, as well as autism, numerous members of this superfamily have not yet been biochemically characterized. RESULTS We determined the abundance of individual types of GREs in 378 metagenomes from healthy humans, including two aerobic body sites (vagina and skin), three microaerobic body sites (tongue, inner cheek, and dental plaque), and one anaerobic body site (gut). The human gut microbiome contained the largest number of distinct GREs, many of which have unknown functions. Our analysis provided new information about known GRE-mediated activities, including production of the disease-associated metabolites trimethylamine and p -cresol. In vitro studies of abundant, uncharacterized GREs from the human gut revealed that radical-based dehydration chemistry is widespread in this environment and led to the discovery of trans -4-hydroxy-l-proline (Hyp) dehydratase. This enzyme enables gut commensals and human pathogens like Clostridium difficile to metabolize Hyp, a nonproteinogenic amino acid that is rare in bacteria but is an abundant posttranslational modification in eukaryotes. The universal distribution of this activity in human gut microbiomes suggests that it plays an important role in this habitat, setting the stage for future hypothesis-driven research. CONCLUSION By accurately identifying enzymes present in microbial communities, this workflow allows ecological context to inform enzyme characterization, uncovering widespread but previously unappreciated metabolic activities. We are now poised to apply this strategy to examine various patient populations, additional protein superfamilies, and other microbiomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听寒完成签到,获得积分10
1秒前
珍珠火龙果完成签到 ,获得积分10
4秒前
似水流年完成签到 ,获得积分10
5秒前
sysi完成签到 ,获得积分10
20秒前
绿波电龙完成签到,获得积分10
21秒前
24秒前
ZZzz完成签到 ,获得积分10
25秒前
wujiwuhui发布了新的文献求助10
29秒前
31秒前
梦梦的小可爱完成签到 ,获得积分10
31秒前
xinjie发布了新的文献求助10
34秒前
36秒前
蛋花肉圆汤完成签到,获得积分10
36秒前
羞涩的文轩完成签到 ,获得积分10
37秒前
42秒前
43秒前
北城完成签到 ,获得积分10
45秒前
量子星尘发布了新的文献求助10
45秒前
48秒前
爱听歌电灯胆完成签到 ,获得积分10
48秒前
不爱吃西葫芦完成签到 ,获得积分10
49秒前
申燕婷完成签到 ,获得积分10
50秒前
橙子完成签到 ,获得积分10
52秒前
ruochenzu发布了新的文献求助10
52秒前
fusheng完成签到 ,获得积分10
1分钟前
浮生完成签到 ,获得积分10
1分钟前
xinjie完成签到,获得积分10
1分钟前
Will完成签到,获得积分10
1分钟前
cuddly完成签到 ,获得积分10
1分钟前
掉头发的小白完成签到,获得积分10
1分钟前
不想看文献完成签到 ,获得积分10
1分钟前
1分钟前
当女遇到乔完成签到 ,获得积分10
1分钟前
独行者完成签到,获得积分10
1分钟前
眼睛大的电脑完成签到,获得积分10
1分钟前
1分钟前
敏敏发布了新的文献求助10
1分钟前
木木完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
JamesPei应助科研通管家采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022