Breast Cancer-Related Lymphedema: Differentiating Fat from Fluid Using Magnetic Resonance Imaging Segmentation

淋巴水肿 吸脂 医学 磁共振成像 乳腺癌 淋巴 放射科 细胞外液 核医学 癌症 外科 病理 内科学 细胞外 生物 细胞生物学
作者
Yuka Sen,Yi Qian,Louise Koelmeyer,Robert Borotkanics,Robyn Ricketts,Helen Mackie,Thomas Lam,Kevin Ho‐Shon,Hiroo Suami,John Boyages
出处
期刊:Lymphatic Research and Biology [Mary Ann Liebert]
卷期号:16 (1): 20-27 被引量:22
标识
DOI:10.1089/lrb.2016.0047
摘要

Background: Lymphedema is an iatrogenic complication after breast cancer treatment in which lymph fluid in the affected limb progresses to fat deposition and fibrosis that are amenable to liposuction treatment. Magnetic resonance imaging (MRI) for lymphedema can differentiate fat tissue from fluid, but estimating relative volumes remains problematic. Methods and Results: Patients underwent routine bilateral arm MRI both before and after liposuction for advanced lymphedema. The threshold-based level set (TLS) segmentation method was applied to segment the geometric image data and to measure volumes of soft tissue (fat, muscle, and lymph fluid) and bone. Bioimpedance testing (L-Dex®) to detect extracellular fluid was also used. Volumes derived by using TLS or girth measurement were evaluated and showed consistent agreement, whereas L-Dex showed no significant reduction between pre- and postoperative measures. The percentage median volume difference between the affected and unaffected sides was 132.4% for girth measures compared with 137.2% for TLS (p = 0.175) preoperatively, and 99.8% and 98.5%, respectively (p = 0.600), postoperatively. MRI segmentation detected reductions in fat (median 52.6%, p = 0.0163) and lymph fluid (median 66%, p = 0.094), but the volumes of muscle and bone were relatively constant. Conclusions: MRI imaging with TLS technology may be a useful tool to quantitatively measure fat tissue and fluid for patients with advanced lymphedema and may assist in the selection of eligible liposuction candidates at initial assessment and follow-up of patients who proceed with surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魁拔蛮吉完成签到 ,获得积分10
1秒前
晓峰完成签到,获得积分20
1秒前
yearluren完成签到,获得积分10
1秒前
peiyy完成签到,获得积分10
1秒前
领导范儿应助TT采纳,获得10
6秒前
清脆代桃完成签到 ,获得积分10
6秒前
科研通AI5应助ghh采纳,获得10
6秒前
叫滚滚发布了新的文献求助10
6秒前
北极熊爱去非洲买蜂蜜小蛋糕完成签到 ,获得积分10
8秒前
yeyong11完成签到,获得积分10
11秒前
CodeCraft应助柔弱的鱼采纳,获得30
12秒前
黄可以完成签到,获得积分10
12秒前
美少叔叔完成签到 ,获得积分10
13秒前
心灵美的修洁完成签到 ,获得积分10
14秒前
lzd完成签到,获得积分10
16秒前
17秒前
诸笑白发布了新的文献求助10
19秒前
19秒前
研友_LOK59L完成签到,获得积分10
21秒前
七子完成签到 ,获得积分10
22秒前
郑盼秋完成签到,获得积分10
22秒前
youjiang发布了新的文献求助10
23秒前
25秒前
孤独收割人完成签到,获得积分10
25秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
27秒前
Upupcc发布了新的文献求助10
29秒前
29秒前
勤劳落雁发布了新的文献求助10
30秒前
30秒前
30秒前
31秒前
31秒前
31秒前
周周发布了新的文献求助10
31秒前
32秒前
科研通AI5应助解青文采纳,获得10
32秒前
科研通AI5应助魏伯安采纳,获得30
32秒前
nekoneko完成签到,获得积分10
35秒前
35秒前
36秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849