Continuous blood pressure estimation based on multiple parameters from eletrocardiogram and photoplethysmogram by Back-propagation neural network

光容积图 血压计 血压 人工神经网络 袖口 舒张期 医学 计算机科学 人工智能 生物医学工程 心脏病学 模式识别(心理学) 内科学 外科 计算机视觉 滤波器(信号处理)
作者
Zhihong Xu,Jiexin Liu,Xianxiang Chen,Yilong Wang,Zhan Zhao
出处
期刊:Computers in Industry [Elsevier BV]
卷期号:89: 50-59 被引量:64
标识
DOI:10.1016/j.compind.2017.04.003
摘要

The cuff-less continuous blood pressure monitoring provides reliable and invaluable information about the individuals' health condition. Conventional sphygmomanometer with a cuff measures only the value of the blood pressure intermittently and the measurement process is sometimes inconvenient. In this work, a systematic approach with multi-parameter fusion has been proposed to estimate the non-invasive beat-to-beat systolic and diastolic blood pressure with high accuracy. The methods involve real-time monitoring of the electrocardiogram (ECG) and photoplethysmogram (PPG), and extracting the R peak from the ECG and relevant feature parameters from the synchronous PPG. Also, it covers the creation of the topological model of back-propagation neural network that has fifteen neurons in the input layer, ten neurons in the single interlayer, and two neurons in the output layer, where all the neurons are fully connected. As for the results, the proposed method was validated on the volunteers. The reference blood pressure (BP) is from Finometer (MIDI, Finapres Medical System, Netherlands). The results showed that the mean ± S.D. for the estimated systolic BP (SBP) and diastolic BP (DBP) with the proposed method against reference were −0.41 ± 2.02 mmHg and 0.46 ± 2.21 mmHg, respectively. Thus, the continuous blood pressure algorithm based on Back-Propagation neural network provides a continuous BP with a high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZL张莉发布了新的文献求助30
1秒前
1秒前
丘比特应助积极紫翠采纳,获得10
1秒前
Liu完成签到 ,获得积分10
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
英姑应助研究生采纳,获得10
2秒前
英姑应助全焱采纳,获得10
3秒前
小蘑菇应助CDI和LIB采纳,获得10
3秒前
wanci应助兑现采纳,获得10
3秒前
自由傲晴完成签到 ,获得积分10
4秒前
陶醉西牛发布了新的文献求助10
5秒前
fox发布了新的文献求助10
5秒前
妙旋克里斯完成签到,获得积分10
5秒前
5秒前
纪思奇完成签到 ,获得积分10
6秒前
李朋发布了新的文献求助10
6秒前
谦让白秋完成签到,获得积分10
6秒前
7秒前
7秒前
bubbull完成签到,获得积分10
8秒前
CipherSage应助一群牛采纳,获得10
8秒前
8秒前
Fbin完成签到,获得积分10
9秒前
木棉完成签到,获得积分10
9秒前
龙仔子完成签到,获得积分10
9秒前
9秒前
轻松土豆关注了科研通微信公众号
10秒前
11秒前
訣别完成签到 ,获得积分10
11秒前
fox完成签到,获得积分10
11秒前
科研通AI5应助asd采纳,获得10
11秒前
11秒前
韩飞完成签到,获得积分20
12秒前
12秒前
12秒前
龙仔子发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403