Continuous blood pressure estimation based on multiple parameters from eletrocardiogram and photoplethysmogram by Back-propagation neural network

光容积图 血压计 血压 人工神经网络 袖口 舒张期 医学 计算机科学 人工智能 生物医学工程 心脏病学 模式识别(心理学) 内科学 外科 计算机视觉 滤波器(信号处理)
作者
Zhihong Xu,Jiexin Liu,Xianxiang Chen,Yilong Wang,Zhan Zhao
出处
期刊:Computers in Industry [Elsevier]
卷期号:89: 50-59 被引量:64
标识
DOI:10.1016/j.compind.2017.04.003
摘要

The cuff-less continuous blood pressure monitoring provides reliable and invaluable information about the individuals' health condition. Conventional sphygmomanometer with a cuff measures only the value of the blood pressure intermittently and the measurement process is sometimes inconvenient. In this work, a systematic approach with multi-parameter fusion has been proposed to estimate the non-invasive beat-to-beat systolic and diastolic blood pressure with high accuracy. The methods involve real-time monitoring of the electrocardiogram (ECG) and photoplethysmogram (PPG), and extracting the R peak from the ECG and relevant feature parameters from the synchronous PPG. Also, it covers the creation of the topological model of back-propagation neural network that has fifteen neurons in the input layer, ten neurons in the single interlayer, and two neurons in the output layer, where all the neurons are fully connected. As for the results, the proposed method was validated on the volunteers. The reference blood pressure (BP) is from Finometer (MIDI, Finapres Medical System, Netherlands). The results showed that the mean ± S.D. for the estimated systolic BP (SBP) and diastolic BP (DBP) with the proposed method against reference were −0.41 ± 2.02 mmHg and 0.46 ± 2.21 mmHg, respectively. Thus, the continuous blood pressure algorithm based on Back-Propagation neural network provides a continuous BP with a high accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英姑应助书生采纳,获得10
1秒前
科研钓鱼佬完成签到,获得积分10
2秒前
4秒前
petrichor应助C_Cppp采纳,获得10
4秒前
nan完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
勤恳的雨文完成签到,获得积分10
5秒前
木森ab发布了新的文献求助10
6秒前
paul完成签到,获得积分10
6秒前
小鞋完成签到,获得积分10
7秒前
开心青旋发布了新的文献求助10
7秒前
fztnh发布了新的文献求助10
7秒前
无名花生完成签到 ,获得积分10
7秒前
9秒前
10秒前
10秒前
杜若完成签到,获得积分10
10秒前
10秒前
木森ab完成签到,获得积分20
12秒前
paul发布了新的文献求助10
13秒前
14秒前
MEME发布了新的文献求助10
17秒前
17秒前
情怀应助LSH970829采纳,获得10
17秒前
CHINA_C13发布了新的文献求助10
20秒前
Mars发布了新的文献求助10
21秒前
哈哈哈完成签到,获得积分10
21秒前
玛卡巴卡应助平常的毛豆采纳,获得100
22秒前
默默的青旋完成签到,获得积分10
23秒前
26秒前
搜集达人应助淡淡采白采纳,获得10
26秒前
高高代珊完成签到 ,获得积分10
27秒前
gmc发布了新的文献求助10
28秒前
28秒前
29秒前
善学以致用应助Mian采纳,获得10
29秒前
学科共进发布了新的文献求助60
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824