An enhanced single‐channel algorithm for retrieving land surface temperature from Landsat series data

算法 系列(地层学) 遥感 频道(广播) 计算机科学 环境科学 地质学 计算机网络 古生物学
作者
Mengmeng Wang,Zhaoming Zhang,Guojin He,Guizhou Wang,Tao Long,Peng Yan
出处
期刊:Journal Of Geophysical Research: Atmospheres [Wiley]
卷期号:121 (19) 被引量:16
标识
DOI:10.1002/2016jd025270
摘要

Abstract Land surface temperature (LST) is a critical parameter in the physics of Earth surface processes and is required for many applications related to ecology and environment. Landsat series satellites have provided more than 30 years of thermal information at medium spatial resolution. This paper proposes an enhanced single‐channel algorithm (SC en ) for retrieving LST from Landsat series data (Landsat 4 to Landsat 8). The SC en algorithm includes three atmospheric functions (AFs), and the latitude and acquisition month of Landsat image were added to the AF models to improve LST retrieval. Performance of the SC en algorithm was assessed with both simulated and in situ data, and accuracy of three single‐channel algorithms (including the monowindow algorithm developed by Qin et al., SC Qin , and the generalized single‐channel algorithm developed by Jiménez‐Muñoz and Sobrino, SC J&S ) were compared. The accuracy assessments with simulated data had root‐mean‐square deviations (RMSDs) for the SC en , SC J&S , and SC Qin algorithms of 1.363 K, 1.858 K, and 2.509 K, respectively. Validation with in situ data showed RMSDs for the SC en and SC J&S algorithms of 1.04 K and 1.49 K, respectively. It was concluded that the SC en algorithm is very operational, has good precision, and can be used to develop an LST product for Landsat series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Charming发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
吉吉国王发布了新的文献求助20
2秒前
2秒前
不想干活应助xhsz1111采纳,获得10
2秒前
2秒前
hhh完成签到,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
Anthony完成签到,获得积分10
4秒前
mdie完成签到,获得积分10
5秒前
printzhao完成签到,获得积分10
6秒前
猪猪发布了新的文献求助10
6秒前
vialavilda完成签到,获得积分10
7秒前
7秒前
7秒前
大方小白发布了新的文献求助10
7秒前
guoguo发布了新的文献求助10
8秒前
8秒前
小松徐完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
xuxu1999完成签到,获得积分10
9秒前
小蘑菇应助星禾吾采纳,获得10
10秒前
漏脑之鱼发布了新的文献求助10
10秒前
科研通AI5应助Key_01采纳,获得20
10秒前
10秒前
11秒前
xd完成签到,获得积分10
11秒前
Orange应助wwz采纳,获得10
11秒前
小松徐发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608373
求助须知:如何正确求助?哪些是违规求助? 4014956
关于积分的说明 12431782
捐赠科研通 3696131
什么是DOI,文献DOI怎么找? 2037842
邀请新用户注册赠送积分活动 1070949
科研通“疑难数据库(出版商)”最低求助积分说明 954875