已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza

根际 生物 营养物 丛枝菌根 共生 农学 植物 生态学 遗传学 细菌
作者
Kevin Garcia,Joan Doidy,Sabine Zimmermann,Daniel Wipf,Pierre‐Emmanuel Courty
出处
期刊:Trends in Plant Science [Elsevier BV]
卷期号:21 (11): 937-950 被引量:172
标识
DOI:10.1016/j.tplants.2016.07.010
摘要

Plant growth and development are highly dependent on rhizosphere nutrient availability which is often a limiting factor. This constraint has forced land plants to evolve various strategies, including beneficial interactions with soil microorganisms. The symbiotic interactions between plant roots and fungi, termed mycorrhizal symbiosis, provide reciprocal benefits for both partners, as for instance for the plant partner the acquisition of nitrogen (N), phosphate (P), potassium (K), and sulfate (S), the primary macronutrients used in plant fertilizer. Plant and fungal transport systems display ‘mycorrhiza-specific’ and ‘fine-tuning’ regulation to control nutrient fluxes towards the symbiotic interface, delimiting the site of reciprocal nutrient exchanges between the partners. The selection and engineering of mycorrhizal partners based on the plant and fungal transportome, targeting the key transporters resulting from the massive generation and analysis of ‘omics’ data, will ensure agro-ecological improvement of crop nutrition. Soil nutrient acquisition and exchanges through symbiotic plant–fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems. Soil nutrient acquisition and exchanges through symbiotic plant–fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems. from myco, fungus; and rhiza, root, the symbiotic association between roots of 85% of land plants and fungi belonging to the Glomeromycota phylum. the ‘tree-like’ fungal structure developing within plant cortical cells in arbuscular mycorrhizal symbiosis. the symbiotic association between roots from trees and shrubs and fungi belonging to the Ascomycota and Basidiomycota phyla. the long, tubular, and ramified structures from which fungi collect water and nutrients. the fungal symbiotic interface encompassing plant cortical cells in ectomycorrhizal symbiosis. Described for the first time by Robert Hartig. homologs are genes that have evolved from a common ancestor gene. transporters are commonly divided into two kinetic types: the saturable high-affinity transporters for uptake of nutrients under low nutrient availability, and the linear low-affinity transporters for uptake of nutrients at higher concentrations. the vegetative part of a fungus, consisting of a network of branching and threadlike hyphae, often underground. a specialized organelle within the host cell enclosing the endosymbiont. (synonym, symbiotic apoplast) the cellular space between the plant and fungal membranes, delimiting the site of reciprocal nutrient exchanges between the partners. range of genes that encode proteins contributing to transport molecules across cellular membranes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
笨笨念文完成签到 ,获得积分10
5秒前
莉莉完成签到,获得积分20
7秒前
10秒前
幸福大白发布了新的文献求助10
15秒前
无奈的盼望完成签到 ,获得积分10
17秒前
大模型应助咚咚咚采纳,获得10
18秒前
曦熙完成签到,获得积分10
18秒前
记得吃蔬菜完成签到,获得积分10
21秒前
22秒前
ding应助hy采纳,获得10
25秒前
26秒前
26秒前
清璃完成签到 ,获得积分10
28秒前
咚咚咚发布了新的文献求助10
32秒前
CodeCraft应助医者仓鼠采纳,获得10
33秒前
buno应助wly1111采纳,获得10
37秒前
39秒前
SiO2完成签到 ,获得积分0
40秒前
48秒前
科研通AI5应助chenjun7080采纳,获得10
52秒前
医者仓鼠发布了新的文献求助10
54秒前
123发布了新的文献求助10
59秒前
Owen应助jichenzhang2024采纳,获得30
59秒前
1分钟前
MXene应助木又采纳,获得20
1分钟前
1分钟前
SciGPT应助高挑的如柏采纳,获得10
1分钟前
chenjun7080发布了新的文献求助10
1分钟前
SDUMoist发布了新的文献求助20
1分钟前
1分钟前
Thien发布了新的文献求助10
1分钟前
科研通AI2S应助络绎采纳,获得10
1分钟前
李健应助爱航哥多久了采纳,获得10
1分钟前
1分钟前
小马甲应助roro熊采纳,获得10
1分钟前
CipherSage应助毅诚菌采纳,获得10
1分钟前
Rita发布了新的文献求助50
1分钟前
linjane发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625231
求助须知:如何正确求助?哪些是违规求助? 4024425
关于积分的说明 12457124
捐赠科研通 3709196
什么是DOI,文献DOI怎么找? 2045920
邀请新用户注册赠送积分活动 1077828
科研通“疑难数据库(出版商)”最低求助积分说明 960374