The Labile Iron Pool in Normal and Pathological Erythroid Cells - Analysis by Flow Cytometry.

钙黄绿素 流式细胞术 生物物理学 荧光 化学 脱铁酮 去铁胺 生物化学 螯合作用 胞浆 K562细胞 细胞 分子生物学 生物 有机化学 物理 量子力学
作者
Eitan Fibach,Eugenia Prus
出处
期刊:Blood [Elsevier BV]
卷期号:106 (11): 3597-3597 被引量:1
标识
DOI:10.1182/blood.v106.11.3597.3597
摘要

Abstract The cellular "labile iron pool" (LIP) is made up of iron ions bound to low affinity ligands varying in composition and quantity under different physiological settings. It is localized primarily, but not exclusively, in the cytosol and, as such, is regarded as the crossroad of cellular iron traffic. The level of the pool is regulated and maintained within a restricted range that meets the cell requirements for iron but prevents excess from developing and triggering cellular damage. The LIP can be quantified due to its ability to bind to cell-permeable chelators, such as calcein-AM. Upon entering viable cells, calcein undergoes hydrolysis by esterases and becomes fluorescent. Its fluorescence is quenched upon binding to cellular LIP, the extent of which is correlated with the amount of LIP. The addition of a non-fluorescent, high affinity chelator, such as salicylaldehyde isonicotinoyl hydrazone (SIH), which removes the iron from the iron-calcein complex, increases the fluorescence emitted by the cells. The difference in the cellular fluorescence before and after incubation with the high affinity chelator reflects the amount of LIP. We adapted this procedure to multi-parameter flow cytometry for measuring LIP in erythroid cells derived from the peripheral blood, bone marrow and primary cultures. The validity of the technique was determined using K562 cells - a human erythroid cell line. Cellular fluorescence increased following incubation with calcein in a concentration- and time-dependent manner. It was further augmented by cell- permeable, high affinity iron chelators such as SIH and Deferiprone (L1), but not by desferrioxamine - an impermeable chelator. Using this method, we showed that pre-incubation of the cells with iron sources such as ferrous ammonium sulfate increased their LIP level. We then studied the LIP content in peripheral blood erythroid cells. Cells were simultaneously stained with calcein and thiazol-orange, a nucleic acid specific dye, which stains reticulocytes according to their RNA content, i.e., degree of maturation. The results indicate that the LIP content decreased (69-fold) with maturation, reaching its lowest level in mature RBC. A comparison of RBC from normal donors (N=5) and patients with β-thalassemia (N=5) indicated higher a (2.4-fold) LIP in the latter. For analysis of bone marrow samples, cells were stained with calcein and fluorochrome-conjugated antibodies to surface antigens (CD45, CD71 and glycophorin A). The results indicated that the LIP content was the highest in basophilic erythroblasts and was reversely correlated with erythroid cell maturation. Finally, we studied erythroid cells in two-phase cultures of peripheral blood-derived erythroid progenitors. Following one week in the absence of erythropoietin, the cells were re-cultured in erythropoietin-supplemented medium. Analysis of the cells on different days of the second phase showed that the LIP content decreased as the cells matured and accumulated hemoglobin. The LIP content could be modulated by changing the culture conditions: increasing by supplementing normal cultures with extra iron (in the form of hollo-transferrin) and decreasing in thalassemic cultures grown in the presence of L1 or SIH. The present findings indicate that the LIP content of erythroid cells is altered under different physiological (e.g., maturation) and pathological (e.g., iron overload, e.g., in thalassemia) conditions. The results also show that flow cytometry, a standard methodology in most hematological labs, could be useful for evaluating the LIP in various diseases and for studying the efficacy of various chelators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lu应助默默的筝采纳,获得20
1秒前
SY完成签到,获得积分10
1秒前
OAHCIL完成签到 ,获得积分10
2秒前
青黄应助猪美丽采纳,获得10
2秒前
跳跃的惮完成签到,获得积分10
2秒前
冥冥之极为昭昭应助zhuang采纳,获得10
3秒前
快来吃甜瓜完成签到,获得积分10
4秒前
nuantong1shy完成签到,获得积分10
4秒前
lxy完成签到,获得积分10
4秒前
李健应助yu采纳,获得10
5秒前
琦琦国王完成签到,获得积分10
5秒前
易燃物品完成签到,获得积分10
5秒前
flac完成签到,获得积分10
7秒前
米奇的妙妙屋完成签到 ,获得积分10
7秒前
Mr_I完成签到,获得积分10
8秒前
BOSSJING完成签到,获得积分10
8秒前
liu完成签到,获得积分20
8秒前
majf发布了新的文献求助10
8秒前
mescal完成签到,获得积分10
8秒前
Welcome完成签到,获得积分10
9秒前
和和完成签到,获得积分10
10秒前
坚定青柏完成签到,获得积分10
11秒前
小灰灰完成签到 ,获得积分10
12秒前
RYAN完成签到 ,获得积分10
12秒前
秘小先儿应助海比天蓝采纳,获得10
13秒前
Zhusy完成签到 ,获得积分10
13秒前
13秒前
14秒前
自觉南风完成签到,获得积分10
14秒前
文静的白羊完成签到,获得积分10
14秒前
14秒前
Cuisine完成签到 ,获得积分10
14秒前
weven完成签到 ,获得积分10
15秒前
15秒前
16秒前
tivyg'lk完成签到,获得积分10
16秒前
xiaoyh96发布了新的文献求助10
16秒前
16秒前
17秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009004
求助须知:如何正确求助?哪些是违规求助? 3548719
关于积分的说明 11299835
捐赠科研通 3283284
什么是DOI,文献DOI怎么找? 1810333
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259