The Labile Iron Pool in Normal and Pathological Erythroid Cells - Analysis by Flow Cytometry.

钙黄绿素 流式细胞术 生物物理学 荧光 化学 脱铁酮 去铁胺 生物化学 螯合作用 胞浆 K562细胞 细胞 分子生物学 生物 有机化学 物理 量子力学
作者
Eitan Fibach,Eugenia Prus
出处
期刊:Blood [Elsevier BV]
卷期号:106 (11): 3597-3597 被引量:1
标识
DOI:10.1182/blood.v106.11.3597.3597
摘要

Abstract The cellular "labile iron pool" (LIP) is made up of iron ions bound to low affinity ligands varying in composition and quantity under different physiological settings. It is localized primarily, but not exclusively, in the cytosol and, as such, is regarded as the crossroad of cellular iron traffic. The level of the pool is regulated and maintained within a restricted range that meets the cell requirements for iron but prevents excess from developing and triggering cellular damage. The LIP can be quantified due to its ability to bind to cell-permeable chelators, such as calcein-AM. Upon entering viable cells, calcein undergoes hydrolysis by esterases and becomes fluorescent. Its fluorescence is quenched upon binding to cellular LIP, the extent of which is correlated with the amount of LIP. The addition of a non-fluorescent, high affinity chelator, such as salicylaldehyde isonicotinoyl hydrazone (SIH), which removes the iron from the iron-calcein complex, increases the fluorescence emitted by the cells. The difference in the cellular fluorescence before and after incubation with the high affinity chelator reflects the amount of LIP. We adapted this procedure to multi-parameter flow cytometry for measuring LIP in erythroid cells derived from the peripheral blood, bone marrow and primary cultures. The validity of the technique was determined using K562 cells - a human erythroid cell line. Cellular fluorescence increased following incubation with calcein in a concentration- and time-dependent manner. It was further augmented by cell- permeable, high affinity iron chelators such as SIH and Deferiprone (L1), but not by desferrioxamine - an impermeable chelator. Using this method, we showed that pre-incubation of the cells with iron sources such as ferrous ammonium sulfate increased their LIP level. We then studied the LIP content in peripheral blood erythroid cells. Cells were simultaneously stained with calcein and thiazol-orange, a nucleic acid specific dye, which stains reticulocytes according to their RNA content, i.e., degree of maturation. The results indicate that the LIP content decreased (69-fold) with maturation, reaching its lowest level in mature RBC. A comparison of RBC from normal donors (N=5) and patients with β-thalassemia (N=5) indicated higher a (2.4-fold) LIP in the latter. For analysis of bone marrow samples, cells were stained with calcein and fluorochrome-conjugated antibodies to surface antigens (CD45, CD71 and glycophorin A). The results indicated that the LIP content was the highest in basophilic erythroblasts and was reversely correlated with erythroid cell maturation. Finally, we studied erythroid cells in two-phase cultures of peripheral blood-derived erythroid progenitors. Following one week in the absence of erythropoietin, the cells were re-cultured in erythropoietin-supplemented medium. Analysis of the cells on different days of the second phase showed that the LIP content decreased as the cells matured and accumulated hemoglobin. The LIP content could be modulated by changing the culture conditions: increasing by supplementing normal cultures with extra iron (in the form of hollo-transferrin) and decreasing in thalassemic cultures grown in the presence of L1 or SIH. The present findings indicate that the LIP content of erythroid cells is altered under different physiological (e.g., maturation) and pathological (e.g., iron overload, e.g., in thalassemia) conditions. The results also show that flow cytometry, a standard methodology in most hematological labs, could be useful for evaluating the LIP in various diseases and for studying the efficacy of various chelators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朱杏出发布了新的文献求助10
1秒前
领导范儿应助完美梨愁采纳,获得10
1秒前
阿也完成签到 ,获得积分10
1秒前
YL完成签到,获得积分10
1秒前
害羞的凝竹完成签到 ,获得积分10
1秒前
1秒前
bkagyin应助月月鸟采纳,获得10
2秒前
晨曦暮雪发布了新的文献求助10
2秒前
2秒前
坚果完成签到,获得积分10
3秒前
GaoZz完成签到,获得积分10
3秒前
一只萌新完成签到,获得积分10
3秒前
4秒前
时尚书白完成签到,获得积分10
4秒前
wllllll发布了新的文献求助10
4秒前
4秒前
4秒前
撕裂伤口完成签到 ,获得积分10
4秒前
熊金艳完成签到,获得积分10
5秒前
5秒前
典雅的荣轩完成签到,获得积分10
6秒前
6秒前
玛玛哈哈发布了新的文献求助10
6秒前
baling发布了新的文献求助20
6秒前
喵喵发布了新的文献求助10
6秒前
郭优优完成签到 ,获得积分10
7秒前
DukeAn809应助橙子采纳,获得40
8秒前
乖就完成签到,获得积分10
8秒前
科研通AI6应助Andy采纳,获得10
8秒前
知闲发布了新的文献求助10
8秒前
zhou发布了新的文献求助10
8秒前
8秒前
YYY完成签到,获得积分10
9秒前
科研小白完成签到,获得积分10
9秒前
9秒前
羽言发布了新的文献求助10
9秒前
科里斯皮尔应助kuyng采纳,获得10
9秒前
rua完成签到,获得积分20
9秒前
wllllll完成签到,获得积分10
10秒前
xxdn发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4575863
求助须知:如何正确求助?哪些是违规求助? 3995272
关于积分的说明 12368236
捐赠科研通 3669085
什么是DOI,文献DOI怎么找? 2022092
邀请新用户注册赠送积分活动 1056109
科研通“疑难数据库(出版商)”最低求助积分说明 943424