Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging

拉曼光谱 光学 光谱成像 迭代重建 材料科学 光谱带 核磁共振 物理 计算机科学 人工智能
作者
Shuo Chen,Gang Wang,Xiaoyu Cui,Quan Liu
出处
期刊:Optics Express [The Optical Society]
卷期号:25 (2): 1005-1005 被引量:36
标识
DOI:10.1364/oe.25.001005
摘要

Raman spectroscopy has demonstrated great potential in biomedical applications. However, spectroscopic Raman imaging is limited in the investigation of fast changing phenomena because of slow data acquisition. Our previous studies have indicated that spectroscopic Raman imaging can be significantly sped up using the approach of narrow-band imaging followed by spectral reconstruction. A multi-channel system was built to demonstrate the feasibility of fast wide-field spectroscopic Raman imaging using the approach of simultaneous narrow-band image acquisition followed by spectral reconstruction based on Wiener estimation in phantoms. To further improve the accuracy of reconstructed Raman spectra, we propose a stepwise spectral reconstruction method in this study, which can be combined with the earlier developed sequential weighted Wiener estimation to improve spectral reconstruction accuracy. The stepwise spectral reconstruction method first reconstructs the fluorescence background spectrum from narrow-band measurements and then the pure Raman narrow-band measurements can be estimated by subtracting the estimated fluorescence background from the overall narrow-band measurements. Thereafter, the pure Raman spectrum can be reconstructed from the estimated pure Raman narrow-band measurements. The result indicates that the stepwise spectral reconstruction method can improve spectral reconstruction accuracy significantly when combined with sequential weighted Wiener estimation, compared with the traditional Wiener estimation. In addition, qualitatively accurate cell Raman spectra were successfully reconstructed using the stepwise spectral reconstruction method from the narrow-band measurements acquired by a four-channel wide-field Raman spectroscopic imaging system. This method can potentially facilitate the adoption of spectroscopic Raman imaging to the investigation of fast changing phenomena.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉默的婴完成签到 ,获得积分10
刚刚
1秒前
2秒前
Dita完成签到,获得积分10
2秒前
惠惠发布了新的文献求助10
2秒前
脑洞疼应助lan采纳,获得10
3秒前
4秒前
成就的笑南完成签到 ,获得积分10
5秒前
偷狗的小月亮完成签到,获得积分10
5秒前
爱吃泡芙完成签到,获得积分10
5秒前
ysl完成签到,获得积分10
6秒前
6秒前
爆米花应助pipge采纳,获得30
6秒前
彻底完成签到,获得积分10
7秒前
8秒前
韋晴完成签到,获得积分10
9秒前
9秒前
11秒前
领导范儿应助wenjian采纳,获得10
11秒前
11秒前
奇拉维特完成签到 ,获得积分10
11秒前
12秒前
Apple发布了新的文献求助10
12秒前
wtg完成签到,获得积分10
12秒前
在水一方应助Sheila采纳,获得10
13秒前
英姑应助YE采纳,获得30
13秒前
ysl发布了新的文献求助30
13秒前
13秒前
cilan完成签到 ,获得积分10
16秒前
义气的妙松完成签到,获得积分10
16秒前
yangjing发布了新的文献求助10
17秒前
rosexu发布了新的文献求助10
17秒前
盘尼西林发布了新的文献求助10
18秒前
科研通AI2S应助我是125采纳,获得10
18秒前
李健的小迷弟应助arkamar采纳,获得10
19秒前
Xiaoxiao完成签到,获得积分10
19秒前
cilan发布了新的文献求助10
19秒前
SciGPT应助William鉴哲采纳,获得10
19秒前
20秒前
咩咩完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808