Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging

拉曼光谱 光学 光谱成像 迭代重建 材料科学 光谱带 核磁共振 物理 计算机科学 人工智能
作者
Shuo Chen,Gang Wang,Xiaoyu Cui,Quan Liu
出处
期刊:Optics Express [The Optical Society]
卷期号:25 (2): 1005-1005 被引量:36
标识
DOI:10.1364/oe.25.001005
摘要

Raman spectroscopy has demonstrated great potential in biomedical applications. However, spectroscopic Raman imaging is limited in the investigation of fast changing phenomena because of slow data acquisition. Our previous studies have indicated that spectroscopic Raman imaging can be significantly sped up using the approach of narrow-band imaging followed by spectral reconstruction. A multi-channel system was built to demonstrate the feasibility of fast wide-field spectroscopic Raman imaging using the approach of simultaneous narrow-band image acquisition followed by spectral reconstruction based on Wiener estimation in phantoms. To further improve the accuracy of reconstructed Raman spectra, we propose a stepwise spectral reconstruction method in this study, which can be combined with the earlier developed sequential weighted Wiener estimation to improve spectral reconstruction accuracy. The stepwise spectral reconstruction method first reconstructs the fluorescence background spectrum from narrow-band measurements and then the pure Raman narrow-band measurements can be estimated by subtracting the estimated fluorescence background from the overall narrow-band measurements. Thereafter, the pure Raman spectrum can be reconstructed from the estimated pure Raman narrow-band measurements. The result indicates that the stepwise spectral reconstruction method can improve spectral reconstruction accuracy significantly when combined with sequential weighted Wiener estimation, compared with the traditional Wiener estimation. In addition, qualitatively accurate cell Raman spectra were successfully reconstructed using the stepwise spectral reconstruction method from the narrow-band measurements acquired by a four-channel wide-field Raman spectroscopic imaging system. This method can potentially facilitate the adoption of spectroscopic Raman imaging to the investigation of fast changing phenomena.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
浮游应助天真如松采纳,获得10
2秒前
Litm完成签到 ,获得积分10
2秒前
努力努力再努力CMY完成签到,获得积分10
3秒前
科研通AI6应助Nanco采纳,获得10
3秒前
马吉克wang完成签到,获得积分10
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
changping应助科研通管家采纳,获得10
7秒前
luo应助科研通管家采纳,获得10
7秒前
7秒前
Zx_1993应助科研通管家采纳,获得20
7秒前
JamesPei应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
无极微光应助科研通管家采纳,获得20
7秒前
科研通AI6应助科研通管家采纳,获得30
7秒前
rpool应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
changping应助科研通管家采纳,获得10
8秒前
star应助科研通管家采纳,获得10
8秒前
大个应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
核桃应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540496
求助须知:如何正确求助?哪些是违规求助? 4627087
关于积分的说明 14602207
捐赠科研通 4568067
什么是DOI,文献DOI怎么找? 2504382
邀请新用户注册赠送积分活动 1481989
关于科研通互助平台的介绍 1453623