An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification

残余物 参数统计 自回归模型 计算机科学 可靠性(半导体) 参数化模型 系列(地层学) 模式识别(心理学) 人工智能 算法 数学 统计 生物 量子力学 物理 古生物学 功率(物理)
作者
Alireza Entezami,Hashem Shariatmadar
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:17 (2): 325-345 被引量:122
标识
DOI:10.1177/1475921717693572
摘要

The aim of this article is to propose novel damage indices for damage localization and quantification based on time series modeling. In order to extract damage-sensitive features from time series models, it is essential to choose adequate and robust orders in such a way that the models are able to extract uncorrelated residuals. On this basis, a new iterative order determination method is proposed to select robust orders of time series models under residual analysis by Ljung–Box Q-test. The damage-sensitive features are the parameters and residuals of an AutoRegressive (AR) model obtained from current feature extraction approaches. In this study, the AR model is identified as the most compatible time series model with measured vibration time-domain responses using Box–Jenkins methodology and Leybourne–McCabe hypothesis test. The proposed damage indices are the parametric assurance criterion and the residual reliability criterion that exploit the parameters and residuals of AR models, respectively. The main idea behind locating a damage is to define threshold limits for both damage indices using the features of undamaged conditions based on an unsupervised learning way. The major contributions of this article are to propose an iterative order determination method for time series models and two novel damage indices for locating and quantifying damage. The accuracy and performance of the proposed methods are experimentally demonstrated on a three-story laboratory frame and a model-scale steel structure. Results show that the proposed iterative approach leads to uncorrelated residuals, and the proposed parametric assurance criterion and the residual reliability criterion methods are promising and efficient tools in damage detection problems under varying operational and environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助顺利的慕儿采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助屈春洋采纳,获得10
1秒前
热心又蓝完成签到,获得积分10
2秒前
李龙发布了新的文献求助10
2秒前
2秒前
2秒前
粗心的半鬼完成签到,获得积分10
2秒前
3秒前
3秒前
pw完成签到,获得积分10
3秒前
3秒前
4秒前
情怀应助次次实验次次成采纳,获得10
4秒前
奇博士发布了新的文献求助10
4秒前
在水一方应助山与采纳,获得10
4秒前
4秒前
月落无痕2025完成签到,获得积分10
4秒前
wang发布了新的文献求助10
5秒前
DDD发布了新的文献求助10
5秒前
5秒前
科研通AI5应助laojian采纳,获得10
5秒前
小jia发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
上好佳发布了新的文献求助10
6秒前
jiulei完成签到,获得积分10
6秒前
小妤丸子发布了新的文献求助10
6秒前
7秒前
麒麟发布了新的文献求助10
7秒前
小妮子发布了新的文献求助10
7秒前
7秒前
顺利的海云完成签到,获得积分10
7秒前
8秒前
整整发布了新的文献求助10
8秒前
大方大船发布了新的文献求助10
8秒前
8秒前
8秒前
JokerLove发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071167
求助须知:如何正确求助?哪些是违规求助? 4292013
关于积分的说明 13372748
捐赠科研通 4112513
什么是DOI,文献DOI怎么找? 2252022
邀请新用户注册赠送积分活动 1257123
关于科研通互助平台的介绍 1189843