An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification

残余物 参数统计 自回归模型 计算机科学 可靠性(半导体) 参数化模型 系列(地层学) 模式识别(心理学) 人工智能 算法 数学 统计 生物 量子力学 物理 古生物学 功率(物理)
作者
Alireza Entezami,Hashem Shariatmadar
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:17 (2): 325-345 被引量:122
标识
DOI:10.1177/1475921717693572
摘要

The aim of this article is to propose novel damage indices for damage localization and quantification based on time series modeling. In order to extract damage-sensitive features from time series models, it is essential to choose adequate and robust orders in such a way that the models are able to extract uncorrelated residuals. On this basis, a new iterative order determination method is proposed to select robust orders of time series models under residual analysis by Ljung–Box Q-test. The damage-sensitive features are the parameters and residuals of an AutoRegressive (AR) model obtained from current feature extraction approaches. In this study, the AR model is identified as the most compatible time series model with measured vibration time-domain responses using Box–Jenkins methodology and Leybourne–McCabe hypothesis test. The proposed damage indices are the parametric assurance criterion and the residual reliability criterion that exploit the parameters and residuals of AR models, respectively. The main idea behind locating a damage is to define threshold limits for both damage indices using the features of undamaged conditions based on an unsupervised learning way. The major contributions of this article are to propose an iterative order determination method for time series models and two novel damage indices for locating and quantifying damage. The accuracy and performance of the proposed methods are experimentally demonstrated on a three-story laboratory frame and a model-scale steel structure. Results show that the proposed iterative approach leads to uncorrelated residuals, and the proposed parametric assurance criterion and the residual reliability criterion methods are promising and efficient tools in damage detection problems under varying operational and environmental conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smile发布了新的文献求助10
刚刚
1秒前
Lore完成签到 ,获得积分10
1秒前
1秒前
jiang完成签到,获得积分10
2秒前
2秒前
无奈的酒窝关注了科研通微信公众号
3秒前
毛毛完成签到,获得积分10
3秒前
正在完成签到,获得积分10
4秒前
4秒前
充电宝应助JR采纳,获得10
5秒前
5秒前
cc完成签到,获得积分20
5秒前
李爱国应助111采纳,获得10
5秒前
jy发布了新的文献求助10
5秒前
好好完成签到 ,获得积分10
6秒前
阿希塔完成签到,获得积分10
6秒前
JamesPei应助看看采纳,获得10
6秒前
8秒前
8秒前
卢健辉发布了新的文献求助10
8秒前
9秒前
cookie完成签到,获得积分10
9秒前
JMZ完成签到 ,获得积分10
11秒前
英姑应助星星采纳,获得10
11秒前
spurs17发布了新的文献求助30
12秒前
LH完成签到,获得积分10
12秒前
CodeCraft应助Island采纳,获得10
13秒前
annis完成签到,获得积分10
13秒前
小黄应助asir_xw采纳,获得10
14秒前
认真的rain完成签到,获得积分10
14秒前
糊涂的小伙完成签到,获得积分10
15秒前
芒果豆豆完成签到,获得积分10
15秒前
赎罪完成签到 ,获得积分10
16秒前
卢健辉完成签到,获得积分10
16秒前
16秒前
17秒前
负责的中道完成签到,获得积分10
18秒前
dyh6802发布了新的文献求助10
18秒前
儒雅八宝粥完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808