EA-Net: Edge-aware network for brain structure segmentation via decoupled high and low frequency features

计算机科学 人工智能 分割 特征(语言学) 模式识别(心理学) 块(置换群论) 编码器 GSM演进的增强数据速率 光学(聚焦) 计算机视觉 数学 哲学 物理 光学 操作系统 语言学 几何学
作者
Qian Hu,Ying Wei,Xiang Li,Chuyuan Wang,Jiaguang Li,Yuefeng Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106139-106139 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106139
摘要

Automatic brain structure segmentation in Magnetic Resonance Image (MRI) plays an important role in the diagnosis of various neuropsychiatric diseases. However, most existing methods yield unsatisfactory results due to blurred boundaries and complex structures. Improving the segmentation ability requires the model to be explicit about the spatial localization and shape appearance of targets, which correspond to the low-frequency content features and the high-frequency edge features, respectively. Therefore, in this paper, to extract rich edge and content feature representations, we focus on the composition of the feature and utilize a frequency decoupling (FD) block to separate the low-frequency and high-frequency parts of the feature. Further, a novel edge-aware network (EA-Net) is proposed for jointly learning to segment brain structures and detect object edges. First, an encoder-decoder sub-network is utilized to obtain multi-level information from the input MRI, which is then sent to the FD block to complete the frequency separation. Further, we use different mechanisms to optimize both the low-frequency and high-frequency features. Finally, these two parts are fused to generate the final prediction. In particular, we extract the content mask and the edge mask from the optimization feature with different supervisions, which forces the network to learn the boundary features of the object. Extensive experiments are performed on two public brain MRI T1 scan datasets (the IBSR dataset and the MALC dataset) to evaluate the effectiveness of the proposed algorithm. The experiments show that the EA-Net achieves the best performance compared with the state-of-the-art methods, and improves the segmentation DSC score by 1.31% at most compared with the U-Net model and its variants. Moreover, we evaluate the EA-Net under different noise disturbances, and the results demonstrate the robustness and superiority of our method under low-quality noisy MRI. Code is available at https://github.com/huqian999/EA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xunxunmimi完成签到,获得积分10
2秒前
天天快乐应助明明明采纳,获得30
2秒前
啦啦啦完成签到,获得积分10
3秒前
谢逸轩发布了新的文献求助10
4秒前
英姑应助行路人采纳,获得20
5秒前
jiangwei完成签到 ,获得积分10
5秒前
完美世界应助涵泽采纳,获得10
7秒前
10秒前
纯真的觅露完成签到,获得积分20
10秒前
sjdghgdhs发布了新的文献求助10
11秒前
Tony12完成签到,获得积分10
11秒前
星星轨迹发布了新的文献求助10
14秒前
谢逸轩完成签到,获得积分10
14秒前
14秒前
艺涵发布了新的文献求助10
15秒前
SciGPT应助叶小文采纳,获得10
15秒前
cyn0762发布了新的文献求助10
16秒前
17秒前
spyspy完成签到,获得积分10
17秒前
林佳一完成签到,获得积分10
19秒前
城南烤地瓜完成签到 ,获得积分10
19秒前
20秒前
等等完成签到 ,获得积分10
22秒前
wanci应助mzc采纳,获得10
22秒前
一条咸鱼发布了新的文献求助10
22秒前
24秒前
某只兔子完成签到,获得积分10
25秒前
大模型应助一条咸鱼采纳,获得10
26秒前
行路人发布了新的文献求助20
26秒前
阿航完成签到,获得积分10
26秒前
26秒前
28秒前
28秒前
28秒前
科研通AI5应助科研混子采纳,获得10
29秒前
英俊的铭应助欧阳正义采纳,获得10
30秒前
30秒前
Chris发布了新的文献求助10
31秒前
SciGPT应助科研通管家采纳,获得10
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967386
求助须知:如何正确求助?哪些是违规求助? 3512667
关于积分的说明 11164479
捐赠科研通 3247536
什么是DOI,文献DOI怎么找? 1793911
邀请新用户注册赠送积分活动 874758
科研通“疑难数据库(出版商)”最低求助积分说明 804498