EA-Net: Edge-aware network for brain structure segmentation via decoupled high and low frequency features

计算机科学 人工智能 分割 特征(语言学) 模式识别(心理学) 块(置换群论) 编码器 GSM演进的增强数据速率 光学(聚焦) 计算机视觉 数学 哲学 物理 光学 操作系统 语言学 几何学
作者
Qian Hu,Ying Wei,Xiang Li,Chuyuan Wang,Jiaguang Li,Yuefeng Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:150: 106139-106139 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106139
摘要

Automatic brain structure segmentation in Magnetic Resonance Image (MRI) plays an important role in the diagnosis of various neuropsychiatric diseases. However, most existing methods yield unsatisfactory results due to blurred boundaries and complex structures. Improving the segmentation ability requires the model to be explicit about the spatial localization and shape appearance of targets, which correspond to the low-frequency content features and the high-frequency edge features, respectively. Therefore, in this paper, to extract rich edge and content feature representations, we focus on the composition of the feature and utilize a frequency decoupling (FD) block to separate the low-frequency and high-frequency parts of the feature. Further, a novel edge-aware network (EA-Net) is proposed for jointly learning to segment brain structures and detect object edges. First, an encoder-decoder sub-network is utilized to obtain multi-level information from the input MRI, which is then sent to the FD block to complete the frequency separation. Further, we use different mechanisms to optimize both the low-frequency and high-frequency features. Finally, these two parts are fused to generate the final prediction. In particular, we extract the content mask and the edge mask from the optimization feature with different supervisions, which forces the network to learn the boundary features of the object. Extensive experiments are performed on two public brain MRI T1 scan datasets (the IBSR dataset and the MALC dataset) to evaluate the effectiveness of the proposed algorithm. The experiments show that the EA-Net achieves the best performance compared with the state-of-the-art methods, and improves the segmentation DSC score by 1.31% at most compared with the U-Net model and its variants. Moreover, we evaluate the EA-Net under different noise disturbances, and the results demonstrate the robustness and superiority of our method under low-quality noisy MRI. Code is available at https://github.com/huqian999/EA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
poker84完成签到,获得积分10
刚刚
1秒前
小欣鱼发布了新的文献求助10
1秒前
ycg完成签到,获得积分10
1秒前
1秒前
打打应助ChemistryZyh采纳,获得10
1秒前
dqycpu完成签到,获得积分10
2秒前
2秒前
二世小卒完成签到 ,获得积分10
2秒前
Focus_BG完成签到,获得积分10
2秒前
2秒前
3秒前
xinxin发布了新的文献求助30
3秒前
Ws完成签到,获得积分10
3秒前
大头粽完成签到,获得积分10
4秒前
丸丸0完成签到,获得积分20
4秒前
三寿发布了新的文献求助10
5秒前
小_n完成签到,获得积分10
6秒前
风趣的洙应助感动城采纳,获得20
7秒前
无语发布了新的文献求助10
8秒前
赤莲完成签到,获得积分10
8秒前
陶远望完成签到,获得积分10
9秒前
garfieldg3完成签到,获得积分10
10秒前
louge完成签到,获得积分10
11秒前
anan完成签到 ,获得积分10
11秒前
yx阿聪完成签到,获得积分10
11秒前
11秒前
坦率斑马完成签到,获得积分10
11秒前
大个应助zhengzheng采纳,获得10
12秒前
13秒前
穆小菜发布了新的文献求助10
14秒前
丸丸0发布了新的文献求助10
14秒前
lijun完成签到,获得积分10
14秒前
Sober完成签到 ,获得积分10
15秒前
ata完成签到,获得积分10
15秒前
踏实的研完成签到,获得积分10
15秒前
xiaowang完成签到,获得积分10
15秒前
阿拉完成签到,获得积分20
16秒前
wuhao发布了新的文献求助10
16秒前
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413593
求助须知:如何正确求助?哪些是违规求助? 3015897
关于积分的说明 8872742
捐赠科研通 2703636
什么是DOI,文献DOI怎么找? 1482380
科研通“疑难数据库(出版商)”最低求助积分说明 685272
邀请新用户注册赠送积分活动 679994