清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EA-Net: Edge-aware network for brain structure segmentation via decoupled high and low frequency features

计算机科学 人工智能 分割 特征(语言学) 模式识别(心理学) 块(置换群论) 编码器 GSM演进的增强数据速率 光学(聚焦) 计算机视觉 数学 哲学 物理 光学 操作系统 语言学 几何学
作者
Qian Hu,Ying Wei,Xiang Li,Chuyuan Wang,Jiaguang Li,Yuefeng Wang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:150: 106139-106139 被引量:8
标识
DOI:10.1016/j.compbiomed.2022.106139
摘要

Automatic brain structure segmentation in Magnetic Resonance Image (MRI) plays an important role in the diagnosis of various neuropsychiatric diseases. However, most existing methods yield unsatisfactory results due to blurred boundaries and complex structures. Improving the segmentation ability requires the model to be explicit about the spatial localization and shape appearance of targets, which correspond to the low-frequency content features and the high-frequency edge features, respectively. Therefore, in this paper, to extract rich edge and content feature representations, we focus on the composition of the feature and utilize a frequency decoupling (FD) block to separate the low-frequency and high-frequency parts of the feature. Further, a novel edge-aware network (EA-Net) is proposed for jointly learning to segment brain structures and detect object edges. First, an encoder-decoder sub-network is utilized to obtain multi-level information from the input MRI, which is then sent to the FD block to complete the frequency separation. Further, we use different mechanisms to optimize both the low-frequency and high-frequency features. Finally, these two parts are fused to generate the final prediction. In particular, we extract the content mask and the edge mask from the optimization feature with different supervisions, which forces the network to learn the boundary features of the object. Extensive experiments are performed on two public brain MRI T1 scan datasets (the IBSR dataset and the MALC dataset) to evaluate the effectiveness of the proposed algorithm. The experiments show that the EA-Net achieves the best performance compared with the state-of-the-art methods, and improves the segmentation DSC score by 1.31% at most compared with the U-Net model and its variants. Moreover, we evaluate the EA-Net under different noise disturbances, and the results demonstrate the robustness and superiority of our method under low-quality noisy MRI. Code is available at https://github.com/huqian999/EA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助jiacheng采纳,获得10
10秒前
29秒前
armpit发布了新的文献求助10
35秒前
37秒前
armpit完成签到,获得积分10
43秒前
FengyaoWang完成签到,获得积分10
43秒前
FashionBoy应助夜雨采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
斯文败类应助十分十分佳采纳,获得10
1分钟前
1分钟前
123完成签到,获得积分10
2分钟前
夜雨发布了新的文献求助10
2分钟前
2分钟前
jiacheng发布了新的文献求助10
2分钟前
田様应助酷炫小馒头采纳,获得10
2分钟前
2分钟前
yao完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
GingerF应助Artin采纳,获得50
3分钟前
3分钟前
白云发布了新的文献求助10
3分钟前
zhoull完成签到 ,获得积分10
4分钟前
Hello应助snowskating采纳,获得10
4分钟前
Lucas应助酷炫小馒头采纳,获得10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
谈杰发布了新的文献求助10
5分钟前
oscar完成签到,获得积分10
6分钟前
6分钟前
星星发布了新的文献求助10
6分钟前
6分钟前
11发布了新的文献求助10
7分钟前
11完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926803
求助须知:如何正确求助?哪些是违规求助? 4196382
关于积分的说明 13032610
捐赠科研通 3968735
什么是DOI,文献DOI怎么找? 2175117
邀请新用户注册赠送积分活动 1192274
关于科研通互助平台的介绍 1102675