Subgraph-based feature fusion models for semantic similarity computation in heterogeneous knowledge graphs

计算机科学 嵌入 特征(语言学) 相似性(几何) 语义相似性 语义学(计算机科学) 人工智能 图形 计算 代表(政治) 理论计算机科学 数据挖掘 机器学习 自然语言处理 算法 图像(数学) 哲学 语言学 政治 政治学 法学 程序设计语言
作者
Yuanfei Deng,Wen Bai,Yuncheng Jiang,Yong Tang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:257: 109906-109906 被引量:2
标识
DOI:10.1016/j.knosys.2022.109906
摘要

Semantic similarity is a fundamental task in natural language processing that determines the similarity between two concepts within a taxonomy. For example, a pair of words (e.g., car and bike) appear similar because they share the same category (e.g., vehicle). Numerous computation methods, such as distance-based and feature-based approaches, are proposed to precisely depict this similarity. As knowledge graphs become heterogeneous (e.g., DBpedia), existing methods have limitations on utilizing multi-view features (e.g., abstract, structure, and categories). On the one hand, some features are incomplete for various reasons, reducing the effectiveness of embedding methods. On the other hand, the hidden connections among multi-view features are omitted by existing approaches. To address the problems mentioned above, we first extract three subgraphs from a heterogeneous knowledge graph and then combine various embedding approaches to capture the global semantics of each concept. Next, we offer subgraph-based feature fusion models that improve concept representation by fusing multi-view features. Finally, we devise mixed computation methods to calculate the semantic similarity between the two concepts. Experiment results show that multi-view features, particularly the abstract feature, can effectively improve the performance of the proposed methods. Compared to existing approaches, our methods significantly improve the Pearson correlation coefficient by about 7%. The source code of this paper is available at: https://github.com/fiego/SubgraphSS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nightmoonsun发布了新的文献求助30
1秒前
kkneed发布了新的文献求助10
1秒前
可爱的人雄完成签到,获得积分10
1秒前
wangbq完成签到 ,获得积分10
2秒前
3秒前
踏实冰棍发布了新的文献求助10
4秒前
大卫在分享应助故笺采纳,获得10
4秒前
xia完成签到,获得积分10
5秒前
动听的母鸡完成签到,获得积分10
6秒前
Jalinezz完成签到,获得积分10
7秒前
8秒前
JimmyLinlin完成签到,获得积分10
8秒前
8秒前
蒋海完成签到 ,获得积分10
8秒前
庾幻儿完成签到,获得积分10
8秒前
爆米花应助体贴的晟睿采纳,获得30
10秒前
天际繁星完成签到 ,获得积分10
10秒前
10秒前
烂漫的松完成签到,获得积分10
12秒前
12秒前
冬青发布了新的文献求助30
13秒前
14秒前
14秒前
千早爱音完成签到 ,获得积分10
14秒前
Ava应助ciooli采纳,获得30
14秒前
leeleetyo发布了新的文献求助10
15秒前
15秒前
快不了完成签到,获得积分10
16秒前
游一完成签到,获得积分10
16秒前
17秒前
AHA完成签到,获得积分10
17秒前
酷波er应助不可思宇采纳,获得10
17秒前
滴滴滴完成签到 ,获得积分10
19秒前
19秒前
loong发布了新的文献求助10
19秒前
生科爱好者完成签到,获得积分10
20秒前
STZHEN完成签到,获得积分10
20秒前
20秒前
陶醉雨兰发布了新的文献求助30
21秒前
hope应助infinite采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655