法维皮拉维
利巴韦林
布尼亚病毒属
病毒学
绿色荧光蛋白
效价
病毒
重组DNA
EC50型
生物
细胞培养
传染性
病毒复制
野生型
分子生物学
体外
突变体
基因
医学
遗传学
传染病(医学专业)
病理
丙型肝炎病毒
疾病
2019年冠状病毒病(COVID-19)
作者
Nanjie Ren,Fei Wang,Lu Zhao,Shunlong Wang,Guilin Zhang,Jingbo Li,Bo Zhang,Jinglin Wang,Éric Bergeron,Zhiming Yuan,Han Xia
标识
DOI:10.1016/j.antiviral.2022.105421
摘要
Orthobunyaviruses have been reported to cause severe diseases in humans or animals, posing a potential threat to human health and socio-economy. Ebinur lake virus (EBIV) is a newly classified orthobunyavirus, which can induce the histopathogenic change and even the high mortality of infected BALB/c mice. Therefore, it is needed to further study the viral replication and pathogenesis, and develop the therapies to cope with its potential infection to human or animals. Here, through the reverse genetics system, the recombinant EBIV of wild type (rEBIV/WT) and NP-conjugated-eGFP (rEBIV/eGFP/S) were rescued for the application of the high-content screening (HCS) of antiviral drug. The eGFP fluorescence signal of the rEBIV/eGFP/S was stable in the process of successive passage in BHK-21 cells (over 10 passages) and this recombinant virus could replicate in various cell lines. Compared to the wild type EBIV, the rEBIV/eGFP/S caused the smaller plaques (diameter around 1 mm on 3 dpi) and lower peak titers (105 PFU/mL), suggesting attenuation due to the eGFP insertion. Through the high-content screening (HCS) system, two antiviral compounds, ribavirin and favipiravir, which previously reported to have effect to some bunyavirus were tested firstly. Ribavirin showed an inhibitory effect on the rEBIV/eGFP/S (EC50 = 14.38 μM) as our expect, while favipiravir with no inhibitory effect even using high doses. Furthermore, Tyrphostin A9 (EC50 = 0.72 μM for rEBIV/eGFP/S, EC50 = 0.05 μM for EBIV-WT) and UNC0638 (EC50 = 1.26 μM for rEBIV/eGFP/S, EC50 = 1.10 μM for rEBIV/eGFP/S) were identified with strong antiviral effect against EBIV in vitro from 150 antiviral compounds. In addition, the time-of-addition assay indicated that Tyrphostin A9 worked in the stage of viral post-infection, and the UNC0638 in all pre-, co-, and post-infection stages. This robust reverse genetics system will facilitate the investigation into the studying of viral replication and assembly mechanisms, and the development of drug and vaccine for EBIV in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI