手性(物理)
化学
转化(遗传学)
化学物理
高压
纳米技术
立体化学
热力学
手征对称性
物理
夸克
基因
材料科学
生物化学
量子力学
Nambu–Jona Lasinio模型
作者
Meng‐En Sun,Yonggang Wang,Fei Wang,Jiangang Feng,Lingrui Wang,Hanfei Gao,Gaosong Chen,Jiazhen Gu,Yongping Fu,Kejun Bu,Tonghuan Fu,Junlong Li,Xujie Lü,Lei Jiang,Yuchen Wu,Shuang‐Quan Zang
摘要
Chiral perovskites have attracted considerable attention owing to their potential applications in spintronic- and polarization-based optoelectronic devices. However, the structural chirality/asymmetry transfer mechanism between chiral organic ammoniums and achiral inorganic frameworks is still equivocal, especially under extreme conditions, as the systematic structural differences between chiral and achiral perovskites have been rarely explored. Herein, we successfully synthesized a pair of new enantiomeric chiral perovskite (S/R-3PYEA)PbI4 (3PYEA2+ = C5NH5C2H4NH32+) and an achiral perovskite (rac-3PYEA)PbI4. Hydrostatic pressure was used, for the first time, to systematically investigate the differences in the structural evolution and optical behavior between (S/R-3PYEA)PbI4 and (rac-3PYEA)PbI4. At approximately 7.0 GPa, (S/R-3PYEA)PbI4 exhibits a chirality-dependent structural transformation with a bandgap "red jump" and dramatic piezochromism from translucent red to opaque black. Upon further compression, a previously unreported chirality-induced negative linear compressibility (NLC) is achieved in (S/R-3PYEA)PbI4. High-pressure structural characterizations and first-principles calculations demonstrate that pressure-driven homodirectional tilting of homochiral ammonium cations strengthens the interactions between S/R-3PYEA2+ and Pb–I frameworks, inducing the formation of new asymmetric hydrogen bonds N–H···I–Pb in (S/R-3PYEA)PbI4. The enhanced asymmetric H-bonding interactions further break the symmetry of (S/R-3PYEA)PbI4 and trigger a greater degree of in-plane and out-of-plane distortion of [PbI6]4– octahedra, which are responsible for chirality-dependent structural phase transition and NLC, respectively. Nevertheless, the balanced H-bonds incurred by equal proportions of S-3PYEA2+ and R-3PYEA2+ counteract the tilting force, leading to the absence of chirality-dependent structural transition, spectral "red jump", and NLC in (rac-3PYEA)PbI4.
科研通智能强力驱动
Strongly Powered by AbleSci AI