A review of attacker-defender games: Current state and paths forward

计算机科学 启发式 对抗制 领域(数学) 博弈论 国家(计算机科学) 光学(聚焦) 管理科学 运筹学 数理经济学 人工智能 算法 经济 工程类 物理 光学 操作系统 纯数学 数学
作者
Kyle Hunt,Jun Zhuang
出处
期刊:European Journal of Operational Research [Elsevier BV]
卷期号:313 (2): 401-417 被引量:44
标识
DOI:10.1016/j.ejor.2023.04.009
摘要

In this article, we review the literature which proposes attacker-defender games to protect against strategic adversarial threats. More specifically, we follow the systematic literature review methodology to collect and review 127 journal articles that have been published over the past 15 years. We start by briefly discussing the common application areas that are addressed in the literature, although our focus in this review lies heavily in the approaches that have been adopted to model and solve attacker-defender games. In studying these approaches, we begin by analyzing the following features of the proposed game formulations: the sequence of moves, number of players, nature of decision variables and objective functions, and time horizons. We then analyze the common assumptions of perfect rationality, risk neutrality, and complete information that are enforced within the majority of the articles, and report on state-of-the-art research which has begun relaxing these assumptions. We find that relaxing these assumptions presents further challenges, such as enforcing new assumptions regarding how uncertainties are modeled, and issues with intractability when models are reformulated to account for considerations such as risk preferences. Finally, we examine the methods that have been adopted to solve attacker-defender games. We find that the majority of the articles obtain closed-form solutions to their models, while there are also many articles that developed novel solution algorithms and heuristics. Upon synthesizing and analyzing the literature, we expose open questions in the field, and present promising future research directions that can advance current knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助subat采纳,获得10
3秒前
夏枯草发布了新的文献求助10
4秒前
善学以致用应助王缪芸采纳,获得10
4秒前
5秒前
我是老大应助淡定的幼南采纳,获得10
5秒前
小刘发布了新的文献求助10
7秒前
9秒前
量子星尘发布了新的文献求助150
11秒前
梁小雨发布了新的文献求助10
12秒前
12秒前
清淮发布了新的文献求助10
13秒前
13秒前
小白完成签到,获得积分10
13秒前
14秒前
faithya发布了新的文献求助10
16秒前
ling完成签到 ,获得积分10
17秒前
孤独碧空完成签到,获得积分10
20秒前
快乐映秋发布了新的文献求助10
20秒前
DavidShaw发布了新的文献求助10
20秒前
DANNI发布了新的文献求助10
20秒前
有空完成签到,获得积分10
22秒前
陈蕴兮给陈蕴兮的求助进行了留言
22秒前
23秒前
wise111发布了新的文献求助10
24秒前
Zz发布了新的文献求助20
24秒前
冯广发布了新的文献求助10
25秒前
大模型应助liuliu采纳,获得10
25秒前
欠虐宝宝发布了新的文献求助10
25秒前
wxd发布了新的文献求助10
26秒前
heiehi完成签到,获得积分10
28秒前
实力与幸运并存完成签到,获得积分10
28秒前
29秒前
从容芮举报Jiangzhibing求助涉嫌违规
29秒前
无情的宛儿完成签到,获得积分10
29秒前
小二郎应助踏实依玉采纳,获得10
31秒前
有空发布了新的文献求助10
31秒前
35秒前
脑洞疼应助陆木子采纳,获得10
35秒前
量子星尘发布了新的文献求助10
36秒前
36秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Handbook of Social and Emotional Learning 500
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114705
求助须知:如何正确求助?哪些是违规求助? 4321984
关于积分的说明 13467476
捐赠科研通 4153626
什么是DOI,文献DOI怎么找? 2275948
邀请新用户注册赠送积分活动 1277982
关于科研通互助平台的介绍 1215920