A review of attacker-defender games: Current state and paths forward

计算机科学 启发式 对抗制 领域(数学) 博弈论 国家(计算机科学) 光学(聚焦) 管理科学 运筹学 数理经济学 人工智能 算法 经济 工程类 物理 光学 操作系统 纯数学 数学
作者
Kyle Hunt,Jun Zhuang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:313 (2): 401-417 被引量:44
标识
DOI:10.1016/j.ejor.2023.04.009
摘要

In this article, we review the literature which proposes attacker-defender games to protect against strategic adversarial threats. More specifically, we follow the systematic literature review methodology to collect and review 127 journal articles that have been published over the past 15 years. We start by briefly discussing the common application areas that are addressed in the literature, although our focus in this review lies heavily in the approaches that have been adopted to model and solve attacker-defender games. In studying these approaches, we begin by analyzing the following features of the proposed game formulations: the sequence of moves, number of players, nature of decision variables and objective functions, and time horizons. We then analyze the common assumptions of perfect rationality, risk neutrality, and complete information that are enforced within the majority of the articles, and report on state-of-the-art research which has begun relaxing these assumptions. We find that relaxing these assumptions presents further challenges, such as enforcing new assumptions regarding how uncertainties are modeled, and issues with intractability when models are reformulated to account for considerations such as risk preferences. Finally, we examine the methods that have been adopted to solve attacker-defender games. We find that the majority of the articles obtain closed-form solutions to their models, while there are also many articles that developed novel solution algorithms and heuristics. Upon synthesizing and analyzing the literature, we expose open questions in the field, and present promising future research directions that can advance current knowledge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谢小盟发布了新的文献求助200
刚刚
天天快乐应助水文新绿微采纳,获得10
刚刚
子期完成签到 ,获得积分10
1秒前
张先森完成签到,获得积分10
1秒前
zhaolg完成签到,获得积分20
1秒前
ee发布了新的文献求助10
2秒前
2秒前
www发布了新的文献求助10
2秒前
个性语堂发布了新的文献求助10
2秒前
3秒前
3秒前
4114完成签到,获得积分10
4秒前
搜集达人应助深情雨泽采纳,获得10
4秒前
可爱的函函应助大胆芯采纳,获得10
7秒前
直率小霜发布了新的文献求助30
7秒前
7秒前
7秒前
8秒前
8秒前
9秒前
TT完成签到,获得积分10
9秒前
byy发布了新的文献求助10
11秒前
11秒前
www发布了新的文献求助10
11秒前
Ava应助Angora采纳,获得10
12秒前
13秒前
稀尔发布了新的文献求助10
13秒前
13秒前
在水一方应助王jj采纳,获得10
13秒前
14秒前
YW_ALLIN发布了新的文献求助10
14秒前
九仙过海应助goldNAN采纳,获得10
14秒前
aaaaa发布了新的文献求助10
14秒前
小波波波完成签到,获得积分10
15秒前
热情魔镜完成签到,获得积分10
16秒前
风趣的老太完成签到,获得积分10
16秒前
16秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712429
求助须知:如何正确求助?哪些是违规求助? 5209804
关于积分的说明 15267369
捐赠科研通 4864354
什么是DOI,文献DOI怎么找? 2611366
邀请新用户注册赠送积分活动 1561656
关于科研通互助平台的介绍 1518919