Prediction of moment‐by‐moment heart rate and skin conductance changes in the context of varying emotional arousal

背景(考古学) 唤醒 心理学 皮肤电导 力矩(物理) 心率 脑电图 终结性评价 认知心理学 神经科学 血压 形成性评价 医学 内科学 生物 古生物学 教育学 物理 经典力学 生物医学工程
作者
Harisu Abdullahi Shehu,Matt Oxner,Will N. Browne,Hedwig Eisenbarth
出处
期刊:Psychophysiology [Wiley]
卷期号:60 (9) 被引量:7
标识
DOI:10.1111/psyp.14303
摘要

Abstract Autonomic nervous system (ANS) responses such as heart rate (HR) and galvanic skin responses (GSR) have been linked with cerebral activity in the context of emotion. Although much work has focused on the summative effect of emotions on ANS responses, their interaction in a continuously changing context is less clear. Here, we used a multimodal data set of human affective states, which includes electroencephalogram (EEG) and peripheral physiological signals of participants' moment‐by‐moment reactions to emotional provoking video clips and modeled HR and GSR changes using machine learning techniques, specifically, long short‐term memory (LSTM), decision tree (DT), and linear regression (LR). We found that LSTM achieved a significantly lower error rate compared with DT and LR due to its inherent ability to handle sequential data. Importantly, the prediction error was significantly reduced for DT and LR when used together with particle swarm optimization to select relevant/important features for these algorithms. Unlike summative analysis, and contrary to expectations, we found a significantly lower error rate when the prediction was made across different participants than within a participant. Moreover, the predictive selected features suggest that the patterns predictive of HR and GSR were substantially different across electrode sites and frequency bands. Overall, these results indicate that specific patterns of cerebral activity track autonomic body responses. Although individual cerebral differences are important, they might not be the only factors influencing the moment‐by‐moment changes in ANS responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到,获得积分10
刚刚
沐兮发布了新的文献求助10
1秒前
kangshuai完成签到,获得积分10
1秒前
白明橘完成签到,获得积分10
1秒前
ccalvintan发布了新的文献求助10
1秒前
2秒前
zjiang发布了新的文献求助50
3秒前
4秒前
饱满的路灯完成签到,获得积分10
5秒前
111完成签到 ,获得积分10
5秒前
5秒前
6秒前
skyer1发布了新的文献求助10
6秒前
晓阳发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
脑洞疼应助包容的人生采纳,获得10
10秒前
ZhangDibaiyu完成签到,获得积分10
10秒前
常常完成签到,获得积分10
12秒前
en发布了新的文献求助10
12秒前
v啦啦啦啦完成签到 ,获得积分10
12秒前
sanmu应助好困采纳,获得50
13秒前
13秒前
鳗鱼雪莲完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
眼睛大问梅关注了科研通微信公众号
17秒前
英姑应助蜗牛采纳,获得10
17秒前
19秒前
大模型应助辛普森采纳,获得10
19秒前
OnionJJ应助花痴的易真采纳,获得10
20秒前
车车关注了科研通微信公众号
21秒前
小瓶子完成签到,获得积分10
21秒前
22秒前
23秒前
ccalvintan完成签到,获得积分10
23秒前
24秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159611
求助须知:如何正确求助?哪些是违规求助? 2810617
关于积分的说明 7888779
捐赠科研通 2469621
什么是DOI,文献DOI怎么找? 1314994
科研通“疑难数据库(出版商)”最低求助积分说明 630722
版权声明 602012