Prediction of moment‐by‐moment heart rate and skin conductance changes in the context of varying emotional arousal

背景(考古学) 唤醒 心理学 皮肤电导 力矩(物理) 心率 脑电图 终结性评价 认知心理学 神经科学 血压 形成性评价 医学 内科学 生物 古生物学 教育学 物理 经典力学 生物医学工程
作者
Harisu Abdullahi Shehu,Matt Oxner,Will N. Browne,Hedwig Eisenbarth
出处
期刊:Psychophysiology [Wiley]
卷期号:60 (9) 被引量:7
标识
DOI:10.1111/psyp.14303
摘要

Abstract Autonomic nervous system (ANS) responses such as heart rate (HR) and galvanic skin responses (GSR) have been linked with cerebral activity in the context of emotion. Although much work has focused on the summative effect of emotions on ANS responses, their interaction in a continuously changing context is less clear. Here, we used a multimodal data set of human affective states, which includes electroencephalogram (EEG) and peripheral physiological signals of participants' moment‐by‐moment reactions to emotional provoking video clips and modeled HR and GSR changes using machine learning techniques, specifically, long short‐term memory (LSTM), decision tree (DT), and linear regression (LR). We found that LSTM achieved a significantly lower error rate compared with DT and LR due to its inherent ability to handle sequential data. Importantly, the prediction error was significantly reduced for DT and LR when used together with particle swarm optimization to select relevant/important features for these algorithms. Unlike summative analysis, and contrary to expectations, we found a significantly lower error rate when the prediction was made across different participants than within a participant. Moreover, the predictive selected features suggest that the patterns predictive of HR and GSR were substantially different across electrode sites and frequency bands. Overall, these results indicate that specific patterns of cerebral activity track autonomic body responses. Although individual cerebral differences are important, they might not be the only factors influencing the moment‐by‐moment changes in ANS responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
易安完成签到 ,获得积分10
1秒前
1秒前
招财不肥发布了新的文献求助10
1秒前
Hello应助1111采纳,获得10
2秒前
lwei完成签到,获得积分20
2秒前
白蕲发布了新的文献求助10
2秒前
cindy发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
笑笑完成签到,获得积分10
4秒前
5秒前
默默的芙完成签到,获得积分10
5秒前
xm发布了新的文献求助10
5秒前
5秒前
6秒前
陈佳琪完成签到,获得积分10
6秒前
LU完成签到,获得积分10
6秒前
6秒前
6秒前
lwei发布了新的文献求助10
6秒前
设计狂魔应助九川采纳,获得30
6秒前
LiShin发布了新的文献求助10
7秒前
song完成签到,获得积分10
8秒前
Phoebe1996发布了新的文献求助10
8秒前
yannis2020发布了新的文献求助10
8秒前
小猴发布了新的文献求助10
9秒前
酷酷的老太完成签到 ,获得积分20
9秒前
9秒前
锣大炮完成签到,获得积分10
10秒前
maqin完成签到,获得积分10
10秒前
小王完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
科研通AI2S应助lwei采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762