Identification of thrombopoiesis inducer based on a hybrid deep neural network model

血小板生成素 深度学习 药品 药物发现 人工神经网络 计算生物学 深层神经网络 计算机科学 人工智能 机器学习 药理学 生物 生物信息学 巨核细胞 造血 遗传学 干细胞
作者
Qi Mo,Ting Zhang,Jianming Wu,Long Wang,Jiesi Luo
出处
期刊:Thrombosis Research [Elsevier]
卷期号:226: 36-50 被引量:3
标识
DOI:10.1016/j.thromres.2023.04.011
摘要

Thrombocytopenia is a common haematological problem worldwide. Currently, there are no relatively safe and effective agents for the treatment of thrombocytopenia. To address this challenge, we propose a computational method that enables the discovery of novel drug candidates with haematopoietic activities. Based on different types of molecular representations, three deep learning (DL) algorithms, namely recurrent neural networks (RNNs), deep neural networks (DNNs), and hybrid neural networks (RNNs+DNNs), were used to develop classification models to distinguish between active and inactive compounds. The evaluation results illustrated that the hybrid DL model exhibited the best prediction performance, with an accuracy of 97.8 % and Matthews correlation coefficient of 0.958 on the test dataset. Subsequently, we performed drug discovery screening based on the hybrid DL model and identified a compound from the FDA-approved drug library that was structurally divergent from conventional drugs and showed a potential therapeutic action against thrombocytopenia. The novel drug candidate wedelolactone significantly promoted megakaryocyte differentiation in vitro and increased platelet levels and megakaryocyte differentiation in irradiated mice with no systemic toxicity. Overall, our work demonstrates how artificial intelligence can be used to discover novel drugs against thrombocytopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斩荆披棘发布了新的文献求助10
刚刚
希望天下0贩的0应助Lds采纳,获得10
刚刚
酷波er应助dasheng采纳,获得10
刚刚
1秒前
腼腆的十八应助ambitiouslu采纳,获得50
2秒前
番茄炒蛋完成签到,获得积分10
2秒前
AnasYusuf完成签到,获得积分10
2秒前
tulips完成签到 ,获得积分10
3秒前
3秒前
科研通AI5应助西江宴采纳,获得10
3秒前
3秒前
5秒前
小蘑菇应助之乎者也采纳,获得10
5秒前
6秒前
高挑的果汁完成签到,获得积分10
6秒前
Melody发布了新的文献求助10
7秒前
魔幻柜子完成签到 ,获得积分10
8秒前
小个完成签到,获得积分10
8秒前
9秒前
jbtjht发布了新的文献求助10
9秒前
Juan发布了新的文献求助10
9秒前
晓峰关注了科研通微信公众号
10秒前
10秒前
坦率的跳跳糖完成签到 ,获得积分10
11秒前
李健应助湘大ZJL采纳,获得10
13秒前
赘婿应助Evol采纳,获得10
13秒前
14秒前
15秒前
安静凡旋发布了新的文献求助10
15秒前
15秒前
领导范儿应助iii采纳,获得10
15秒前
lelouch发布了新的文献求助10
16秒前
李爱国应助hanggg采纳,获得10
16秒前
17秒前
17秒前
18秒前
GarethY发布了新的文献求助10
18秒前
迟大猫应助Melody采纳,获得10
18秒前
20秒前
科研通AI5应助jbtjht采纳,获得10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561233
求助须知:如何正确求助?哪些是违规求助? 3134952
关于积分的说明 9410444
捐赠科研通 2835342
什么是DOI,文献DOI怎么找? 1558422
邀请新用户注册赠送积分活动 728199
科研通“疑难数据库(出版商)”最低求助积分说明 716729