亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Probabilistic Forecasting of Patient Waiting Times in an Emergency Department

概率逻辑 计算机科学 急诊科 急诊分诊台 工作量 时间点 运筹学 人工智能 医疗急救 医学 数学 美学 操作系统 精神科 哲学
作者
Siddharth Arora,James W. Taylor,Ho‐Yin Mak
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
卷期号:25 (4): 1489-1508 被引量:12
标识
DOI:10.1287/msom.2023.1210
摘要

Problem definition: We study the estimation of the probability distribution of individual patient waiting times in an emergency department (ED). Whereas it is known that waiting-time estimates can help improve patients’ overall satisfaction and prevent abandonment, existing methods focus on point forecasts, thereby completely ignoring the underlying uncertainty. Communicating only a point forecast to patients can be uninformative and potentially misleading. Methodology/results: We use the machine learning approach of quantile regression forest to produce probabilistic forecasts. Using a large patient-level data set, we extract the following categories of predictor variables: (1) calendar effects, (2) demographics, (3) staff count, (4) ED workload resulting from patient volumes, and (5) the severity of the patient condition. Our feature-rich modeling allows for dynamic updating and refinement of waiting-time estimates as patient- and ED-specific information (e.g., patient condition, ED congestion levels) is revealed during the waiting process. The proposed approach generates more accurate probabilistic and point forecasts when compared with methods proposed in the literature for modeling waiting times and rolling average benchmarks typically used in practice. Managerial implications: By providing personalized probabilistic forecasts, our approach gives low-acuity patients and first responders a more comprehensive picture of the possible waiting trajectory and provides more reliable inputs to inform prescriptive modeling of ED operations. We demonstrate that publishing probabilistic waiting-time estimates can inform patients and ambulance staff in selecting an ED from a network of EDs, which can lead to a more uniform spread of patient load across the network. Aspects relating to communicating forecast uncertainty to patients and implementing this methodology in practice are also discussed. For emergency healthcare service providers, probabilistic waiting-time estimates could assist in ambulance routing, staff allocation, and managing patient flow, which could facilitate efficient operations and cost savings and aid in better patient care and outcomes. Supplemental Material: The online supplement is available at https://doi.org/10.1287/msom.2023.1210 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiyin完成签到,获得积分10
2秒前
3秒前
科研通AI2S应助Evy采纳,获得10
3秒前
15秒前
20秒前
白华苍松发布了新的文献求助10
20秒前
22秒前
或习发布了新的文献求助10
24秒前
852应助或习采纳,获得10
29秒前
40秒前
44秒前
46秒前
50秒前
可爱的函函应助科研小白采纳,获得10
50秒前
小鱼爱吃肉应助加菲丰丰采纳,获得10
50秒前
学渣小林发布了新的文献求助10
53秒前
复杂宇宙发布了新的文献求助10
54秒前
脑洞疼应助学渣小林采纳,获得10
56秒前
无花果应助复杂宇宙采纳,获得10
1分钟前
学渣小林完成签到,获得积分10
1分钟前
1分钟前
xiaowu应助白华苍松采纳,获得10
1分钟前
1分钟前
1分钟前
wangqi发布了新的文献求助10
1分钟前
樊樊完成签到 ,获得积分10
1分钟前
bkagyin应助wangqi采纳,获得10
1分钟前
许结朱陈完成签到 ,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
下文献的蜉蝣完成签到 ,获得积分10
1分钟前
Marciu33发布了新的文献求助10
1分钟前
这个手刹不太灵完成签到 ,获得积分10
1分钟前
1分钟前
爱心完成签到 ,获得积分10
1分钟前
Rewi_Zhang完成签到,获得积分10
1分钟前
1分钟前
鬼鬼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330358
求助须知:如何正确求助?哪些是违规求助? 2959988
关于积分的说明 8597988
捐赠科研通 2638593
什么是DOI,文献DOI怎么找? 1444464
科研通“疑难数据库(出版商)”最低求助积分说明 669106
邀请新用户注册赠送积分活动 656727