Complex business ecosystem intelligence using AI-powered visual analytics

分析 商业智能 视觉分析 计算机科学 商业分析 生态系统 商业生态系统 数据科学 可视化 人工智能 业务 知识管理 生态学 商业模式 业务分析 生物 营销
作者
Rahul C. Basole,Hyunwoo Park,C. David Seuss
出处
期刊:Decision Support Systems [Elsevier]
卷期号:178: 114133-114133 被引量:4
标识
DOI:10.1016/j.dss.2023.114133
摘要

Business ecosystems are complex, dynamic systems characterized by a multitude of entities, including companies, ventures, and technologies, as well as activities and trends. Understanding the state of business ecosystems is an increasingly critical strategic imperative for many decision makers, but it is a resource-intensive activity as relevant information sources are dispersed, often highly unstructured, and not integrated or curated to deliver actionable insights. In this research, we present the design and implementation of an interactive visual analytic system that integrates artificial intelligence and graph visualization techniques to augment decision makers' understanding of the complex public narrative associated with business ecosystems entities. Our system is driven by a real-time content engine of 100,000+ global data sources including press releases, news articles, industry reports, analyst blogs in multiple languages organized across several domain-specific repositories. Following a user-specified query, the engine extracts both domain-agnostic and domain-specific entities and concepts for each document in the result set. We then model and visualize the resulting data as a dynamic, multipartite network and implement graph pruning algorithms and interactive data controls to enable users to interactively explore and discover the underlying business ecosystem from multiple perspectives. We illustrate and discuss the value of our system using representative use cases. Our study makes multiple contributions to visual decision support theory and practice, including mining unstructured data, constructing and interacting with knowledge graphs, and designing visual analytic tools for ecosystem intelligence. We conclude the study with implications and future research opportunities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
5秒前
研友_Z63G18完成签到 ,获得积分10
6秒前
侯_发布了新的文献求助10
8秒前
泡沫之夏发布了新的文献求助10
9秒前
Ryuki完成签到 ,获得积分10
9秒前
jachin完成签到 ,获得积分10
11秒前
科研通AI6应助跳跃的海雪采纳,获得10
11秒前
12秒前
12秒前
17秒前
andykhoo2007发布了新的文献求助10
19秒前
linggggg完成签到,获得积分10
21秒前
平城落叶完成签到,获得积分10
21秒前
充电宝应助小zhu采纳,获得10
24秒前
a379896033完成签到 ,获得积分10
25秒前
25秒前
26秒前
27秒前
搜集达人应助echo采纳,获得10
27秒前
zlh发布了新的文献求助10
32秒前
阳光发布了新的文献求助10
32秒前
andykhoo2007完成签到,获得积分10
35秒前
36秒前
38秒前
天真豪英完成签到 ,获得积分10
38秒前
在水一方应助侯_采纳,获得10
39秒前
怡然的复天完成签到,获得积分10
40秒前
田様应助张zhang采纳,获得10
41秒前
Ava应助zlh采纳,获得10
42秒前
jc哥发布了新的文献求助10
44秒前
44秒前
二世小卒完成签到 ,获得积分0
45秒前
guanxiaofei完成签到,获得积分10
46秒前
46秒前
zero完成签到,获得积分10
48秒前
yfy_fairy完成签到,获得积分10
51秒前
大鹅发布了新的文献求助10
52秒前
忆雪完成签到,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560221
求助须知:如何正确求助?哪些是违规求助? 4645390
关于积分的说明 14675061
捐赠科研通 4586534
什么是DOI,文献DOI怎么找? 2516468
邀请新用户注册赠送积分活动 1490087
关于科研通互助平台的介绍 1460900