Abnormal traffic detection system in SDN based on deep learning hybrid models

计算机科学 深度学习 实时计算 交通分类 人工智能 计算机网络 服务质量
作者
Kun Wang,Yu Fu,Xueyuan Duan,Can Liu,Jianqiao Xu
出处
期刊:Computer Communications [Elsevier]
卷期号:216: 183-194 被引量:26
标识
DOI:10.1016/j.comcom.2023.12.041
摘要

Software defined network (SDN) provides technical support for network construction of smart cities. However, the openness of SDN is also prone to more network attacks. Traditional abnormal traffic detection algorithms are complex and time-consuming, so it is difficult to find abnormalities in the network in time and unable to satisfy the requirements of abnormal traffic detection in the SDN environment. Therefore, we propose an abnormal traffic detection system based on deep learning hybrid model. The system adopts a hierarchical detection method. Firstly, it completes the rough detection of abnormal traffic in the network according to the statistical information of switch ports and then uses wavelet transform and deep learning technology to extract multi-dimensional features of all traffic data flowing through suspicious switches, so as to realize the fine detection of abnormal traffic from the surface. The experimental results show that the proposed detection method based on port information can quickly locate the source of abnormal traffic. Compared with the traditional abnormal traffic detection method in SDN, the fine detection method based on multi-dimensional features improves the accuracy by 1.7 %, the recall rate by 1.6 %, and the false positive rate by 91.3 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐新雨发布了新的文献求助10
1秒前
初步完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
猪猪hero发布了新的文献求助10
5秒前
CodeCraft应助科研通管家采纳,获得10
6秒前
嘿嘿应助科研通管家采纳,获得10
6秒前
rebubu应助科研通管家采纳,获得10
6秒前
所所应助科研通管家采纳,获得30
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
直率代荷应助科研通管家采纳,获得10
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
不二子发布了新的文献求助10
7秒前
8秒前
8秒前
pancake发布了新的文献求助10
8秒前
务实的南露完成签到,获得积分10
10秒前
打打应助棋士采纳,获得10
10秒前
10秒前
yang完成签到,获得积分10
11秒前
咸鱼完成签到 ,获得积分10
13秒前
13秒前
13秒前
猪猪hero发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694202
求助须知:如何正确求助?哪些是违规求助? 5096252
关于积分的说明 15213274
捐赠科研通 4850853
什么是DOI,文献DOI怎么找? 2602038
邀请新用户注册赠送积分活动 1553878
关于科研通互助平台的介绍 1511814