Abnormal traffic detection system in SDN based on deep learning hybrid models

计算机科学 深度学习 实时计算 交通分类 人工智能 计算机网络 服务质量
作者
Kun Wang,Yu Fu,Xueyuan Duan,Can Liu,Jianqiao Xu
出处
期刊:Computer Communications [Elsevier]
卷期号:216: 183-194 被引量:26
标识
DOI:10.1016/j.comcom.2023.12.041
摘要

Software defined network (SDN) provides technical support for network construction of smart cities. However, the openness of SDN is also prone to more network attacks. Traditional abnormal traffic detection algorithms are complex and time-consuming, so it is difficult to find abnormalities in the network in time and unable to satisfy the requirements of abnormal traffic detection in the SDN environment. Therefore, we propose an abnormal traffic detection system based on deep learning hybrid model. The system adopts a hierarchical detection method. Firstly, it completes the rough detection of abnormal traffic in the network according to the statistical information of switch ports and then uses wavelet transform and deep learning technology to extract multi-dimensional features of all traffic data flowing through suspicious switches, so as to realize the fine detection of abnormal traffic from the surface. The experimental results show that the proposed detection method based on port information can quickly locate the source of abnormal traffic. Compared with the traditional abnormal traffic detection method in SDN, the fine detection method based on multi-dimensional features improves the accuracy by 1.7 %, the recall rate by 1.6 %, and the false positive rate by 91.3 %.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
烟花应助藏鸟采纳,获得30
1秒前
1秒前
Pendragon发布了新的文献求助10
1秒前
1秒前
乔滴滴发布了新的文献求助10
1秒前
1秒前
英姑应助luoluo采纳,获得10
2秒前
3秒前
cach发布了新的文献求助30
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
研友_VZG7GZ应助llyyff采纳,获得10
4秒前
wanci应助玩命的元霜采纳,获得10
4秒前
5秒前
单薄书蕾完成签到,获得积分10
5秒前
5秒前
6秒前
cc完成签到,获得积分10
7秒前
8秒前
缥缈傥发布了新的文献求助10
8秒前
9秒前
菲菲完成签到 ,获得积分10
9秒前
10秒前
闫111完成签到,获得积分10
11秒前
12秒前
贪玩访枫完成签到,获得积分20
12秒前
CAOHOU应助刚子采纳,获得10
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
13秒前
哈哈呢么发布了新的文献求助10
14秒前
南京发布了新的文献求助10
14秒前
14秒前
GC发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078