A novel model for ultra-short term wind power prediction based on Vision Transformer

期限(时间) 风力发电 计算机科学 变压器 环境科学 工程类 电气工程 电压 量子力学 物理
作者
Ling Xiang,Xiaomengting Fu,Qingtao Yao,Guopeng Zhu,Aijun Hu
出处
期刊:Energy [Elsevier]
卷期号:294: 130854-130854 被引量:10
标识
DOI:10.1016/j.energy.2024.130854
摘要

Wind power has quickly developed in the world owing to the advantages of pure, inexpensive, and inexhaustible. However, strong volatility, unmanageable, and randomness make it difficult to achieve secure wind power generation. An excellent wind power prediction is effective for power system scheduling and safely stable operation. Vision Transformer (ViT) model is introduced for building a connection of the extracted characteristics and desired output. Long-short term memory (LSTM) is combined with ViT, and a new wind power forecasting model is proposed in this paper. For the proposed LSTM-ViT model, the temporal aspects of the weather data and correspondence properties are extracted based on LSTM. The link of the output and characteristic is established in view of the ViT, and the multi-headed self-attentiveness mechanisms in ViT fully exploit the relationship between the inputs. The validity and sophistication of the LSTM-ViT method are validated by the climate statistics and statistics of wind power. The results indicate that the wind power forecasting model is provided with higher prediction accuracy. The forecast results for the fourth quarter are used as analysis cases. The root mean square error of the method is reduced by 41.77%, 16.60%, 28.72%, 26.81%, and 16.25% compared to gate recurrent unit (GRU), LSTM, ViT, convolutional neural network (CNN)-ViT, and GRU-ViT respectively. The mean absolute error of the LSTM-ViT method in the first quarter is 0.327, with model comparison values reduction of 33.71%, 38.30%, 32.99%, 17.63% and 10.65% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YoungDoctor完成签到,获得积分0
刚刚
请叫我风吹麦浪应助de采纳,获得10
刚刚
科研通AI5应助FG采纳,获得10
1秒前
1秒前
1秒前
NexusExplorer应助尹不愁采纳,获得10
1秒前
清然发布了新的文献求助10
2秒前
3秒前
3秒前
孙玉莹完成签到,获得积分10
3秒前
科研通AI5应助开开采纳,获得10
4秒前
4秒前
认真一斩完成签到,获得积分10
6秒前
南笙发布了新的文献求助10
7秒前
8秒前
乐乐应助小柴狗采纳,获得10
8秒前
8秒前
shifeng_zai发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
奋斗绿旋发布了新的文献求助10
11秒前
可爱的函函应助zhxi采纳,获得10
11秒前
阿溪发布了新的文献求助10
11秒前
11秒前
12秒前
科目三应助yzy采纳,获得10
12秒前
12秒前
SYLH应助aistudy采纳,获得10
12秒前
Akim应助xxx采纳,获得10
12秒前
知道发布了新的文献求助10
13秒前
Quinn关注了科研通微信公众号
14秒前
14秒前
宋宋发布了新的文献求助10
14秒前
RC_Wang完成签到,获得积分0
14秒前
14秒前
烂漫映秋完成签到,获得积分10
14秒前
陌路发布了新的文献求助10
14秒前
聪明灵阳应助安静笑晴采纳,获得30
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476745
求助须知:如何正确求助?哪些是违规求助? 3068336
关于积分的说明 9107499
捐赠科研通 2759802
什么是DOI,文献DOI怎么找? 1514301
邀请新用户注册赠送积分活动 700193
科研通“疑难数据库(出版商)”最低求助积分说明 699379