亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A novel model for ultra-short term wind power prediction based on Vision Transformer

期限(时间) 风力发电 计算机科学 变压器 环境科学 工程类 电气工程 电压 量子力学 物理
作者
Ling Xiang,Xiaomengting Fu,Qingtao Yao,Guopeng Zhu,Aijun Hu
出处
期刊:Energy [Elsevier]
卷期号:294: 130854-130854 被引量:30
标识
DOI:10.1016/j.energy.2024.130854
摘要

Wind power has quickly developed in the world owing to the advantages of pure, inexpensive, and inexhaustible. However, strong volatility, unmanageable, and randomness make it difficult to achieve secure wind power generation. An excellent wind power prediction is effective for power system scheduling and safely stable operation. Vision Transformer (ViT) model is introduced for building a connection of the extracted characteristics and desired output. Long-short term memory (LSTM) is combined with ViT, and a new wind power forecasting model is proposed in this paper. For the proposed LSTM-ViT model, the temporal aspects of the weather data and correspondence properties are extracted based on LSTM. The link of the output and characteristic is established in view of the ViT, and the multi-headed self-attentiveness mechanisms in ViT fully exploit the relationship between the inputs. The validity and sophistication of the LSTM-ViT method are validated by the climate statistics and statistics of wind power. The results indicate that the wind power forecasting model is provided with higher prediction accuracy. The forecast results for the fourth quarter are used as analysis cases. The root mean square error of the method is reduced by 41.77%, 16.60%, 28.72%, 26.81%, and 16.25% compared to gate recurrent unit (GRU), LSTM, ViT, convolutional neural network (CNN)-ViT, and GRU-ViT respectively. The mean absolute error of the LSTM-ViT method in the first quarter is 0.327, with model comparison values reduction of 33.71%, 38.30%, 32.99%, 17.63% and 10.65% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
13秒前
宣若剑发布了新的文献求助10
21秒前
Murphy完成签到,获得积分10
35秒前
浮游应助科研通管家采纳,获得10
49秒前
mm应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
浮游应助科研通管家采纳,获得10
49秒前
田様应助科研启动采纳,获得30
56秒前
1分钟前
你嵙这个期刊没买完成签到,获得积分10
1分钟前
li发布了新的文献求助20
1分钟前
li完成签到,获得积分20
1分钟前
1分钟前
嘻嘻哈哈完成签到,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
apple发布了新的文献求助10
2分钟前
2分钟前
Conner完成签到 ,获得积分10
2分钟前
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
xxx发布了新的文献求助10
2分钟前
嵐酱布响堪论文完成签到,获得积分10
2分钟前
Jessica完成签到,获得积分10
3分钟前
3分钟前
4分钟前
aa111发布了新的文献求助10
4分钟前
完美世界应助aa111采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Elements of Evolutionary Genetics 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463313
求助须知:如何正确求助?哪些是违规求助? 4568049
关于积分的说明 14312357
捐赠科研通 4493975
什么是DOI,文献DOI怎么找? 2462050
邀请新用户注册赠送积分活动 1450987
关于科研通互助平台的介绍 1426221