推论
计算机科学
编码器
机器学习
特征学习
人工智能
特征(语言学)
灵活性(工程)
领域(数学分析)
数据挖掘
数学分析
语言学
哲学
统计
数学
操作系统
作者
Jinhang Wei,Zhen Li,Linlin Zhuo,Xiangzheng Fu,Mingjing Wang,Keqin Li,Chengshui Chen
标识
DOI:10.1016/j.compbiomed.2024.108104
摘要
Drug–food interactions (DFIs) crucially impact patient safety and drug efficacy by modifying absorption, distribution, metabolism, and excretion. The application of deep learning for predicting DFIs is promising, yet the development of computational models remains in its early stages. This is mainly due to the complexity of food compounds, challenging dataset developers in acquiring comprehensive ingredient data, often resulting in incomplete or vague food component descriptions. DFI-MS tackles this issue by employing an accurate feature representation method alongside a refined computational model. It innovatively achieves a more precise characterization of food features, a previously daunting task in DFI research. This is accomplished through modules designed for perturbation interactions, feature alignment and domain separation, and inference feedback. These modules extract essential information from features, using a perturbation module and a feature interaction encoder to establish robust representations. The feature alignment and domain separation modules are particularly effective in managing data with diverse frequencies and characteristics. DFI-MS stands out as the first in its field to combine data augmentation, feature alignment, domain separation, and contrastive learning. The flexibility of the inference feedback module allows its application in various downstream tasks. Demonstrating exceptional performance across multiple datasets, DFI-MS represents a significant advancement in food presentations technology. Our code and data are available at https://github.com/kkkayle/DFI-MS.
科研通智能强力驱动
Strongly Powered by AbleSci AI