适应(眼睛)
扩散
领域(数学分析)
计算机科学
数据源
域适应
数据挖掘
心理学
软件工程
物理
数学
热力学
神经科学
试验数据
数学分析
作者
Shivang Chopra,Suraj Kothawade,Houda Aynaou,Aman Chadha
出处
期刊:Cornell University - arXiv
日期:2024-02-07
标识
DOI:10.48550/arxiv.2402.04929
摘要
This paper introduces a novel approach to leverage the generalizability capability of Diffusion Models for Source-Free Domain Adaptation (DM-SFDA). Our proposed DM-SFDA method involves fine-tuning a pre-trained text-to-image diffusion model to generate source domain images using features from the target images to guide the diffusion process. Specifically, the pre-trained diffusion model is fine-tuned to generate source samples that minimize entropy and maximize confidence for the pre-trained source model. We then apply established unsupervised domain adaptation techniques to align the generated source images with target domain data. We validate our approach through comprehensive experiments across a range of datasets, including Office-31, Office-Home, and VisDA. The results highlight significant improvements in SFDA performance, showcasing the potential of diffusion models in generating contextually relevant, domain-specific images.
科研通智能强力驱动
Strongly Powered by AbleSci AI