亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models

人工智能 环境科学 计算机科学 计量经济学 经济
作者
Gang Li,Zhangkang Shu,Miaoli Lin,Jingwen Zhang,Xiaoyu Yan,Zhangjun Liu
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:444: 141228-141228 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141228
摘要

Accurate forecasting of multistep-ahead lake water level is valuable for extreme disaster prevention and eco-environmental protection. However, existing studies mainly focus on promoting forecasting accuracy from model techniques but neglect the importance of appropriate selection of multistep-ahead forecasting strategies. In this study, the most comprehensive summary of current multistep-ahead forecasting strategies was presented. Then, different strategies were used to predict water level of Poyang Lake for multiple horizons based on LSTM and BiLSTM, and four metrics were applied for evaluating the prediction performance of strategies and models. The results showed that all of the strategies obtained satisfactory accuracy for short-term forecasting of lake water level. However, for long-term forecasting, the Rec strategy and DirRec-R strategy significantly outperformed other strategies, the NSE, R2, MSE and MAPE of DirRec-R strategy at XZ station for 180-day ahead forecasting can be improved by 37%, 32%, 58% and 38% compared to widely used Dir strategy. Moreover, Rec strategy and DirRec-R strategy can capture flood peak values while other strategies performed unsatisfactory. Meanwhile, the BiLSTM achieved better performance than LSTM in 72% of the evaluation results for long-term forecasting, but the performance of BiLSTM and LSTM for short-term and medium-long-term forecasting did not exhibit significant difference. This study can provide a reference paradigm for future studies of multistep-ahead forecasting of lake water level or other hydrological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
CipherSage应助环境催化采纳,获得10
9秒前
16秒前
21秒前
21秒前
27秒前
32秒前
zyy完成签到,获得积分10
35秒前
38秒前
40秒前
环境催化发布了新的文献求助10
45秒前
环境催化完成签到,获得积分10
52秒前
1分钟前
yuanquaner发布了新的文献求助10
1分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
隐形曼青应助KID采纳,获得10
2分钟前
2分钟前
Rylynn发布了新的文献求助10
2分钟前
2分钟前
KID发布了新的文献求助10
2分钟前
倔强的大萝卜完成签到 ,获得积分0
2分钟前
原子超人完成签到,获得积分10
2分钟前
冷傲迎梅完成签到 ,获得积分10
3分钟前
浮游应助Omni采纳,获得10
3分钟前
3分钟前
nbtzy完成签到,获得积分10
3分钟前
3分钟前
躺平才有生活完成签到 ,获得积分10
3分钟前
3分钟前
科目三应助科研通管家采纳,获得10
4分钟前
思源应助科研通管家采纳,获得10
4分钟前
田様应助科研通管家采纳,获得50
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
学术疯子完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4935411
求助须知:如何正确求助?哪些是违规求助? 4202806
关于积分的说明 13058830
捐赠科研通 3977755
什么是DOI,文献DOI怎么找? 2179602
邀请新用户注册赠送积分活动 1195669
关于科研通互助平台的介绍 1107368