亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models

人工智能 环境科学 计算机科学 计量经济学 经济
作者
Gang Li,Zhangkang Shu,Miaoli Lin,Jingwen Zhang,Xiaoyu Yan,Zhangjun Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:444: 141228-141228 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141228
摘要

Accurate forecasting of multistep-ahead lake water level is valuable for extreme disaster prevention and eco-environmental protection. However, existing studies mainly focus on promoting forecasting accuracy from model techniques but neglect the importance of appropriate selection of multistep-ahead forecasting strategies. In this study, the most comprehensive summary of current multistep-ahead forecasting strategies was presented. Then, different strategies were used to predict water level of Poyang Lake for multiple horizons based on LSTM and BiLSTM, and four metrics were applied for evaluating the prediction performance of strategies and models. The results showed that all of the strategies obtained satisfactory accuracy for short-term forecasting of lake water level. However, for long-term forecasting, the Rec strategy and DirRec-R strategy significantly outperformed other strategies, the NSE, R2, MSE and MAPE of DirRec-R strategy at XZ station for 180-day ahead forecasting can be improved by 37%, 32%, 58% and 38% compared to widely used Dir strategy. Moreover, Rec strategy and DirRec-R strategy can capture flood peak values while other strategies performed unsatisfactory. Meanwhile, the BiLSTM achieved better performance than LSTM in 72% of the evaluation results for long-term forecasting, but the performance of BiLSTM and LSTM for short-term and medium-long-term forecasting did not exhibit significant difference. This study can provide a reference paradigm for future studies of multistep-ahead forecasting of lake water level or other hydrological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
lulu发布了新的文献求助10
22秒前
24秒前
35秒前
lulu发布了新的文献求助10
43秒前
科研通AI2S应助科研通管家采纳,获得30
52秒前
Owen应助科研通管家采纳,获得10
52秒前
lulu发布了新的文献求助10
56秒前
zzxx完成签到,获得积分10
1分钟前
lulu发布了新的文献求助10
1分钟前
ljx完成签到 ,获得积分10
1分钟前
yipmyonphu应助lulu采纳,获得10
1分钟前
yipmyonphu应助lulu采纳,获得10
1分钟前
yipmyonphu应助lulu采纳,获得10
1分钟前
科研通AI6应助lulu采纳,获得10
1分钟前
1分钟前
1分钟前
2分钟前
jkj发布了新的文献求助10
2分钟前
xixiazhiwang完成签到 ,获得积分10
2分钟前
宇宙无敌完成签到 ,获得积分10
2分钟前
疯狂的寻琴完成签到 ,获得积分10
2分钟前
非洲大象完成签到,获得积分10
2分钟前
超级大王完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
所所应助ZBQ采纳,获得10
3分钟前
柠檬不萌发布了新的文献求助10
3分钟前
3分钟前
柠檬不萌完成签到,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
完美世界应助Rrsssss采纳,获得10
4分钟前
烤鱼的夹克完成签到 ,获得积分10
4分钟前
Syun完成签到,获得积分10
4分钟前
4分钟前
神明完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488538
求助须知:如何正确求助?哪些是违规求助? 4587379
关于积分的说明 14413773
捐赠科研通 4518750
什么是DOI,文献DOI怎么找? 2476038
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434442