亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of strategies for multistep-ahead lake water level forecasting using deep learning models

人工智能 环境科学 计算机科学 计量经济学 经济
作者
Gang Li,Zhangkang Shu,Miaoli Lin,Jingwen Zhang,Xiaoyu Yan,Zhangjun Liu
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:444: 141228-141228 被引量:4
标识
DOI:10.1016/j.jclepro.2024.141228
摘要

Accurate forecasting of multistep-ahead lake water level is valuable for extreme disaster prevention and eco-environmental protection. However, existing studies mainly focus on promoting forecasting accuracy from model techniques but neglect the importance of appropriate selection of multistep-ahead forecasting strategies. In this study, the most comprehensive summary of current multistep-ahead forecasting strategies was presented. Then, different strategies were used to predict water level of Poyang Lake for multiple horizons based on LSTM and BiLSTM, and four metrics were applied for evaluating the prediction performance of strategies and models. The results showed that all of the strategies obtained satisfactory accuracy for short-term forecasting of lake water level. However, for long-term forecasting, the Rec strategy and DirRec-R strategy significantly outperformed other strategies, the NSE, R2, MSE and MAPE of DirRec-R strategy at XZ station for 180-day ahead forecasting can be improved by 37%, 32%, 58% and 38% compared to widely used Dir strategy. Moreover, Rec strategy and DirRec-R strategy can capture flood peak values while other strategies performed unsatisfactory. Meanwhile, the BiLSTM achieved better performance than LSTM in 72% of the evaluation results for long-term forecasting, but the performance of BiLSTM and LSTM for short-term and medium-long-term forecasting did not exhibit significant difference. This study can provide a reference paradigm for future studies of multistep-ahead forecasting of lake water level or other hydrological variables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
17秒前
liuyuannzhuo发布了新的文献求助10
21秒前
34秒前
DayFu完成签到 ,获得积分10
44秒前
51秒前
57秒前
57秒前
liuyuannzhuo发布了新的文献求助10
1分钟前
1分钟前
CQU科研萌新完成签到,获得积分10
1分钟前
隐形曼青应助CQU科研萌新采纳,获得10
1分钟前
Singularity应助tlx采纳,获得20
1分钟前
1分钟前
上官若男应助执着夏山采纳,获得10
1分钟前
2分钟前
2分钟前
2分钟前
充电宝应助执着夏山采纳,获得10
2分钟前
2分钟前
3分钟前
良辰应助科研通管家采纳,获得10
3分钟前
3分钟前
甜蜜发带完成签到 ,获得积分10
3分钟前
4分钟前
执着夏山发布了新的文献求助10
4分钟前
4分钟前
一墨完成签到,获得积分10
4分钟前
4分钟前
清爽夜雪完成签到,获得积分10
4分钟前
从容栾发布了新的文献求助10
4分钟前
科研搬运工完成签到,获得积分10
4分钟前
无花果应助Demi_Ming采纳,获得10
5分钟前
5分钟前
脑洞疼应助科研通管家采纳,获得10
5分钟前
良辰应助科研通管家采纳,获得10
5分钟前
5分钟前
Demi_Ming发布了新的文献求助10
5分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798061
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306394
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527