MUMA: A Multi-Omics Meta-Learning Algorithm for Data Interpretation and Classification

计算机科学 口译(哲学) 算法 人工智能 数据挖掘 机器学习 程序设计语言
作者
Haihui Huang,Jun Shu,Yong Liang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2428-2436 被引量:20
标识
DOI:10.1109/jbhi.2024.3363081
摘要

Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咖啡蓝图发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
2秒前
璿_完成签到,获得积分10
2秒前
劲秉应助MosesXie采纳,获得20
4秒前
6秒前
科研通AI2S应助..采纳,获得10
6秒前
9秒前
11秒前
12秒前
万海完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
英俊的铭应助奥特曼采纳,获得10
13秒前
刘夫人发布了新的文献求助10
14秒前
15秒前
jiajia发布了新的文献求助10
15秒前
南栀发布了新的文献求助10
16秒前
咖啡蓝图完成签到,获得积分10
16秒前
YOLK97发布了新的文献求助10
16秒前
Akim应助YY采纳,获得10
17秒前
17秒前
17秒前
Deduta发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI5应助辉hui采纳,获得10
21秒前
wangbw完成签到,获得积分10
21秒前
21秒前
21秒前
安全123完成签到,获得积分20
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
22秒前
刘蕾完成签到,获得积分10
23秒前
陈民发布了新的文献求助10
24秒前
ZCQ完成签到,获得积分10
24秒前
英俊的铭应助小薛采纳,获得10
24秒前
AAA完成签到,获得积分10
24秒前
..发布了新的文献求助10
25秒前
Orange应助刘夫人采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666163
求助须知:如何正确求助?哪些是违规求助? 3225175
关于积分的说明 9761817
捐赠科研通 2935171
什么是DOI,文献DOI怎么找? 1607459
邀请新用户注册赠送积分活动 759187
科研通“疑难数据库(出版商)”最低求助积分说明 735153