亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MUMA: A Multi-Omics Meta-Learning Algorithm for Data Interpretation and Classification

计算机科学 口译(哲学) 算法 人工智能 数据挖掘 机器学习 程序设计语言
作者
Haihui Huang,Jun Shu,Yong Liang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 2428-2436 被引量:31
标识
DOI:10.1109/jbhi.2024.3363081
摘要

Multi-omics data integration is a promising field combining various types of omics data, such as genomics, transcriptomics, and proteomics, to comprehensively understand the molecular mechanisms underlying life and disease. However, the inherent noise, heterogeneity, and high dimensionality of multi-omics data present challenges for existing methods to extract meaningful biological information without overfitting. This paper introduces a novel Multi-Omics Meta-learning Algorithm (MUMA) that employs self-adaptive sample weighting and interaction-based regularization for enhanced diagnostic performance and interpretability in multi-omics data analysis. Specifically, MUMA captures crucial biological processes across different omics layers by learning a flexible sample reweighting function adaptable to various noise scenarios. Additionally, MUMA incorporates an interaction-based regularization term, encouraging the model to learn from the relationships among different omics modalities. We evaluate MUMA using simulations and eighteen real datasets, demonstrating its superior performance compared to state-of-the-art methods in classifying biological samples (e.g., cancer subtypes) and selecting relevant biomarkers from noisy multi-omics data. As a powerful tool for multi-omics data integration, MUMA can assist researchers in achieving a deeper understanding of the biological systems involved. The source code for MUMA is available at https://github.com/bio-ai-source/MUMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的鹭洋完成签到,获得积分10
7秒前
yuanling完成签到 ,获得积分10
16秒前
19秒前
吴迪发布了新的文献求助10
24秒前
田様应助苏亚婷采纳,获得10
36秒前
闫闫完成签到 ,获得积分10
1分钟前
Nancy0818完成签到 ,获得积分10
1分钟前
乐乐应助lalkiii采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
852应助科研通管家采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
1分钟前
lalkiii发布了新的文献求助10
1分钟前
1分钟前
2分钟前
大模型应助杨惠子采纳,获得10
2分钟前
2分钟前
杨惠子发布了新的文献求助10
2分钟前
杨惠子完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
Hello应助科研通管家采纳,获得10
3分钟前
菜菜完成签到 ,获得积分10
4分钟前
4分钟前
苏亚婷发布了新的文献求助10
4分钟前
点点点完成签到 ,获得积分10
5分钟前
hahasun发布了新的文献求助10
5分钟前
5分钟前
斯文败类应助苏亚婷采纳,获得10
6分钟前
6分钟前
怕孤独的海秋完成签到,获得积分10
6分钟前
6分钟前
6分钟前
科研通AI2S应助吴迪采纳,获得10
6分钟前
小蘑菇应助怕孤独的海秋采纳,获得10
6分钟前
7分钟前
7分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845406
求助须知:如何正确求助?哪些是违规求助? 6202404
关于积分的说明 15616421
捐赠科研通 4962230
什么是DOI,文献DOI怎么找? 2675328
邀请新用户注册赠送积分活动 1620094
关于科研通互助平台的介绍 1575413