Tunable Ferroelectric Topological Defects on 2D Topological Surfaces: Complex Strain Engineering Skyrmion‐Like Polar Structures in 2D Materials

材料科学 空中骑兵 铁电性 极地的 应变工程 拓扑缺陷 拓扑(电路) 凝聚态物理 纳米技术 光电子学 电介质 物理 量子力学 数学 组合数学
作者
Bo Xu,Zhanpeng Gong,Jingran Liu,Yunfei Hong,Yang Yang,Lou Li,Yilun Liu,Junkai Deng,Jefferson Zhe Liu
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:34 (26) 被引量:7
标识
DOI:10.1002/adfm.202311599
摘要

Abstract Polar topological structures in ferroelectric materials have attracted significant interest due to their fascinating physical properties and promising applications in high‐density, nonvolatile memories. Currently, most polar topological patterns are only observed in the bulky perovskite superlattices. In this work, a discovery of tunable ferroelectric polar topological structures is reported, designed, and achieved using topological strain engineering in two‐dimensional (2D) PbX (X = S, Se, and Te) materials via integrating first‐principles calculations, machine learning molecular dynamics simulations, and continuum modeling. First‐principles calculations discover the strain‐induced reversible ferroelectric phase transition with diverse polarization directions strongly correlated to the straining conditions. Taking advantage of the mechanical flexibility of 2D PbX, using molecular dynamics (MD) simulations, it is successfully demonstrated that the complex strain fields of 2D topological surfaces under mechanical indentation can generate unique skyrmion‐like polar topological vortex patterns. Further continuum simulations for experimentally accessible larger‐scale 2D topological surfaces uncover multiple skyrmion‐like structures (i.e., vortex, anti‐vortex, and flux‐closure) and transition between them by adopting/designing different types of mechanical loadings (such as out‐of‐plane indention and air blowing). Topological surfaces with various designable reversible polar topological structures can be tailored by complex straining flexible 2D materials, which provides excellent opportunities for next‐generation nanoelectronics and sensor devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研小民工应助chao Liu采纳,获得100
刚刚
刚刚
nn发布了新的文献求助30
刚刚
FashionBoy应助222采纳,获得10
1秒前
轻松绿旋完成签到,获得积分10
2秒前
4秒前
4秒前
linnn完成签到,获得积分10
4秒前
勤奋的天蓝完成签到,获得积分10
4秒前
英姑应助777采纳,获得10
4秒前
5秒前
Jasper应助老实莫言采纳,获得10
6秒前
6秒前
demoliu完成签到,获得积分10
8秒前
墨冉发布了新的文献求助10
9秒前
阳阳发布了新的文献求助10
10秒前
满意的涵菱完成签到 ,获得积分10
10秒前
沉默靳发布了新的文献求助10
11秒前
慕青应助开朗馒头采纳,获得10
12秒前
13秒前
13秒前
15秒前
隐形曼青应助超帅的谷蓝采纳,获得80
15秒前
HMONEY应助淡然的香薇采纳,获得30
15秒前
16秒前
科研通AI5应助墨冉采纳,获得10
17秒前
科研通AI5应助实验顺利采纳,获得30
17秒前
瞿寒发布了新的文献求助30
17秒前
辉HUI发布了新的文献求助10
19秒前
老实莫言完成签到,获得积分10
19秒前
科研通AI5应助似鱼采纳,获得10
20秒前
阳阳完成签到,获得积分10
21秒前
21秒前
沉默靳完成签到,获得积分10
21秒前
吼吼哈哈发布了新的文献求助10
22秒前
李爱国应助烂漫夜梅采纳,获得10
22秒前
英姑应助Hollen采纳,获得50
23秒前
随便起个名完成签到,获得积分10
23秒前
ff发布了新的文献求助10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427