Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
传奇3应助专注追命采纳,获得10
刚刚
1秒前
英姑应助王Jackson采纳,获得10
1秒前
阳光鹭洋完成签到,获得积分20
1秒前
shuangcheng发布了新的文献求助10
1秒前
3秒前
苍蝇搓手完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
小鱼快游完成签到,获得积分10
3秒前
4秒前
wangxin完成签到,获得积分10
5秒前
5秒前
5秒前
梁锦鹏发布了新的文献求助10
5秒前
鸭蛋公主完成签到 ,获得积分10
5秒前
6秒前
成就心锁完成签到 ,获得积分10
7秒前
qiqi7788完成签到,获得积分20
7秒前
8秒前
球球你了我真的很需要这篇文章完成签到,获得积分10
8秒前
ding完成签到,获得积分10
9秒前
苏苏完成签到,获得积分10
9秒前
9秒前
Ming发布了新的文献求助10
10秒前
科研通AI5应助爱狗先森采纳,获得10
10秒前
几一昂发布了新的文献求助10
10秒前
殷启维发布了新的文献求助10
10秒前
11秒前
汉堡包应助噜啦啦采纳,获得10
11秒前
12秒前
12秒前
朝槿完成签到 ,获得积分10
12秒前
Clarence发布了新的文献求助10
13秒前
神勇小笼包完成签到,获得积分10
13秒前
CodeCraft应助小雨采纳,获得10
13秒前
充电宝应助能量球采纳,获得10
14秒前
GangHuang发布了新的文献求助10
15秒前
深情安青应助hkh采纳,获得10
17秒前
真实的火车完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Handbook of Organizational Communication: An Interdisciplinary Perspective 400
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558607
求助须知:如何正确求助?哪些是违规求助? 3985544
关于积分的说明 12339263
捐赠科研通 3656005
什么是DOI,文献DOI怎么找? 2014096
邀请新用户注册赠送积分活动 1048954
科研通“疑难数据库(出版商)”最低求助积分说明 937316