Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水晶李完成签到 ,获得积分10
5秒前
6秒前
研友_Z7XY28发布了新的文献求助10
14秒前
闪闪的谷梦完成签到 ,获得积分10
15秒前
mictime完成签到,获得积分10
16秒前
Jimmy_King完成签到,获得积分10
18秒前
Telomere完成签到 ,获得积分10
27秒前
30秒前
卡卡完成签到,获得积分10
31秒前
没用的三轮完成签到,获得积分10
32秒前
科研铁人完成签到 ,获得积分10
33秒前
Polymer72应助科研通管家采纳,获得10
34秒前
令狐新竹完成签到 ,获得积分10
34秒前
橘子海完成签到 ,获得积分10
35秒前
fdpb完成签到,获得积分10
36秒前
小炮仗完成签到 ,获得积分10
37秒前
沉沉完成签到 ,获得积分0
37秒前
47秒前
emxzemxz完成签到 ,获得积分10
49秒前
花花完成签到 ,获得积分10
50秒前
逯金戎发布了新的文献求助30
56秒前
云淡风轻完成签到 ,获得积分10
1分钟前
龙卷峰完成签到,获得积分10
1分钟前
富贵完成签到 ,获得积分10
1分钟前
1分钟前
GRATE完成签到 ,获得积分10
1分钟前
kaiserkkk完成签到 ,获得积分10
1分钟前
逯金戎完成签到,获得积分10
1分钟前
LGH完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
1分钟前
苏子轩完成签到 ,获得积分10
1分钟前
hsrlbc完成签到,获得积分10
1分钟前
1分钟前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
yilin完成签到 ,获得积分10
1分钟前
娟儿完成签到 ,获得积分10
1分钟前
mads完成签到 ,获得积分10
1分钟前
我服有点黑完成签到,获得积分10
1分钟前
NexusExplorer应助轻松寄风采纳,获得10
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344217
求助须知:如何正确求助?哪些是违规求助? 2971187
关于积分的说明 8646929
捐赠科研通 2651472
什么是DOI,文献DOI怎么找? 1451812
科研通“疑难数据库(出版商)”最低求助积分说明 672287
邀请新用户注册赠送积分活动 661796