已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
clhoxvpze完成签到 ,获得积分10
1秒前
2秒前
柳贯一发布了新的文献求助10
2秒前
AZN完成签到,获得积分10
2秒前
李剑鸿完成签到,获得积分10
5秒前
10发布了新的文献求助10
6秒前
Charlie完成签到 ,获得积分10
6秒前
8秒前
8秒前
雪白砖家完成签到 ,获得积分10
9秒前
柳贯一完成签到,获得积分10
10秒前
研友_nPxN2n发布了新的文献求助10
10秒前
zyy发布了新的文献求助10
14秒前
yeeee完成签到,获得积分10
15秒前
请输入昵称完成签到,获得积分10
20秒前
科研狗完成签到 ,获得积分10
21秒前
慕青应助123456采纳,获得10
23秒前
25秒前
彭于晏应助胡杨柳采纳,获得10
25秒前
28秒前
落寞迎梦完成签到 ,获得积分10
30秒前
33秒前
33秒前
zhao123123完成签到,获得积分10
35秒前
天天快乐应助正直发箍采纳,获得10
36秒前
舟舟发布了新的文献求助10
37秒前
如此这般完成签到 ,获得积分10
39秒前
kang发布了新的文献求助10
39秒前
黄玉完成签到 ,获得积分10
40秒前
42秒前
TT_Bryant应助轻松戎采纳,获得10
43秒前
书桓完成签到,获得积分10
43秒前
哇咔咔完成签到 ,获得积分10
44秒前
jiao完成签到 ,获得积分10
45秒前
45秒前
打打应助hvgjgfjhgjh采纳,获得10
46秒前
魁梧的衫完成签到 ,获得积分10
46秒前
hermitLee发布了新的文献求助10
46秒前
标致的山晴完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681089
求助须知:如何正确求助?哪些是违规求助? 5004322
关于积分的说明 15174896
捐赠科研通 4840762
什么是DOI,文献DOI怎么找? 2594437
邀请新用户注册赠送积分活动 1547542
关于科研通互助平台的介绍 1505470