Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘刘完成签到 ,获得积分10
4秒前
笨笨忘幽完成签到,获得积分0
6秒前
兴奋的天蓉完成签到 ,获得积分10
10秒前
个性仙人掌完成签到 ,获得积分10
13秒前
CLTTT完成签到,获得积分0
15秒前
HHW完成签到 ,获得积分10
35秒前
握瑾怀瑜完成签到 ,获得积分0
38秒前
38秒前
zizideng发布了新的文献求助10
41秒前
44秒前
nki完成签到,获得积分10
45秒前
LeoBigman完成签到 ,获得积分10
46秒前
糟糕的翅膀完成签到,获得积分10
46秒前
平凡世界完成签到 ,获得积分10
48秒前
wayne完成签到 ,获得积分10
48秒前
nki发布了新的文献求助10
49秒前
小羊完成签到 ,获得积分10
58秒前
搜集达人应助nki采纳,获得10
1分钟前
sevenhill完成签到 ,获得积分10
1分钟前
zizideng完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
可靠映秋完成签到,获得积分10
1分钟前
牛马完成签到,获得积分10
1分钟前
verymiao完成签到 ,获得积分10
2分钟前
华仔应助程晗采纳,获得20
2分钟前
小木没有烦恼完成签到 ,获得积分10
2分钟前
程晗完成签到,获得积分20
2分钟前
俊逸的盛男完成签到 ,获得积分10
2分钟前
2分钟前
程晗发布了新的文献求助20
2分钟前
整齐的电源完成签到 ,获得积分10
2分钟前
吴静完成签到 ,获得积分10
2分钟前
壮观的谷冬完成签到 ,获得积分0
2分钟前
2分钟前
iNk应助悠悠采纳,获得20
3分钟前
Tina泽发布了新的文献求助10
3分钟前
Tina泽完成签到,获得积分10
3分钟前
shacodow完成签到,获得积分10
3分钟前
Lillianzhu1完成签到,获得积分10
3分钟前
ll完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418533
求助须知:如何正确求助?哪些是违规求助? 4534229
关于积分的说明 14143289
捐赠科研通 4450449
什么是DOI,文献DOI怎么找? 2441258
邀请新用户注册赠送积分活动 1432973
关于科研通互助平台的介绍 1410380