Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
微眸发布了新的文献求助10
1秒前
xixi关注了科研通微信公众号
1秒前
酷波er应助gqq采纳,获得10
2秒前
3秒前
阿尉完成签到,获得积分10
3秒前
David_C完成签到,获得积分10
3秒前
4秒前
4秒前
Hello应助小付采纳,获得50
5秒前
科研通AI2S应助Hyunstar采纳,获得10
6秒前
凄美地完成签到,获得积分10
6秒前
6秒前
IamHK发布了新的文献求助10
7秒前
7秒前
7秒前
英姑应助冷傲的店员采纳,获得10
8秒前
123完成签到,获得积分20
8秒前
criz1发布了新的文献求助10
9秒前
An发布了新的文献求助10
10秒前
chocolatemk完成签到,获得积分10
10秒前
周宾克完成签到 ,获得积分10
11秒前
CDX完成签到 ,获得积分10
11秒前
酷波er应助oy采纳,获得10
12秒前
Janson发布了新的文献求助10
12秒前
科研桃完成签到 ,获得积分10
12秒前
13秒前
13秒前
少清纳言发布了新的文献求助10
13秒前
Owen应助zxs采纳,获得10
13秒前
苗条一兰完成签到,获得积分10
14秒前
14秒前
Jasper应助美满烤鸡采纳,获得10
14秒前
董小树发布了新的文献求助10
15秒前
罗mian完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
帅气的襄完成签到,获得积分10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545599
求助须知:如何正确求助?哪些是违规求助? 4631588
关于积分的说明 14621327
捐赠科研通 4573203
什么是DOI,文献DOI怎么找? 2507433
邀请新用户注册赠送积分活动 1484163
关于科研通互助平台的介绍 1455416