Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:6
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
研友_pnxglL发布了新的文献求助10
刚刚
甜蜜的大象完成签到 ,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
1秒前
3秒前
Rochmannn完成签到,获得积分10
3秒前
内向秋寒发布了新的文献求助10
5秒前
6秒前
nekoz发布了新的文献求助10
6秒前
水雾发布了新的文献求助10
7秒前
8秒前
张六六完成签到,获得积分10
9秒前
9秒前
Lee完成签到 ,获得积分10
11秒前
蓝天应助niko采纳,获得10
12秒前
愉快天亦发布了新的文献求助10
13秒前
zhanlan发布了新的文献求助10
14秒前
Aries完成签到,获得积分20
14秒前
勤奋橘子完成签到,获得积分10
15秒前
SciGPT应助leiyuekai采纳,获得10
15秒前
16秒前
缓慢凤凰发布了新的文献求助10
16秒前
烟花应助香菜头采纳,获得30
18秒前
量子星尘发布了新的文献求助10
19秒前
wanci应助zzh采纳,获得10
20秒前
21秒前
天天快乐应助落日出逃采纳,获得10
22秒前
赵永刚完成签到,获得积分10
22秒前
Aries关注了科研通微信公众号
22秒前
阿杰完成签到,获得积分10
23秒前
柒染完成签到 ,获得积分10
25秒前
小天完成签到 ,获得积分10
26秒前
27秒前
CR7应助李嘉图采纳,获得20
27秒前
我是老大应助曹博盛采纳,获得30
28秒前
小天关注了科研通微信公众号
29秒前
hao发布了新的文献求助10
30秒前
huangman完成签到,获得积分10
32秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633958
求助须知:如何正确求助?哪些是违规求助? 4729818
关于积分的说明 14987080
捐赠科研通 4791757
什么是DOI,文献DOI怎么找? 2559034
邀请新用户注册赠送积分活动 1519478
关于科研通互助平台的介绍 1479707