Machine learning based plot level rice lodging assessment using multi-spectral UAV remote sensing

绘图(图形) 遥感 计算机科学 人工智能 环境科学 农业工程 计算机视觉 工程类 数学 地理 统计
作者
Mukesh Kumar,Bimal K. Bhattacharya,Mehul R. Pandya,B. K. Handique
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:219: 108754-108754 被引量:4
标识
DOI:10.1016/j.compag.2024.108754
摘要

Rice plant lodging leads to change in canopy structure, yield loss and creates a menace in harvest operations. In situ assessment of lodging is time consuming, labour intensive, inefficient and inaccurate. Its assessment contributes greatly in in-situ field management and damage analysis. In this study, imaging observations from ten-band (within 444–842 nm) multispectral camera at 0.06 m Ground Sampling Distance (GSD) on-board an unmanned aerial vehicle (UAV) were acquired over a rice research farm (22.7930 N and 72.57140 E), Anand, Gujarat in western part of India. A set of features such as spectral reflectance, vegetation indices, colour coordinates and index, textural parameters and combination of all these were used for discriminating lodged rice crop from standing ones. All these features were extracted and analysed to optimize the sensitive features followed by discrimination of these two classes of rice using ensemble learning based Random Forest (RF) classifier. The analysis revealed that Green, Red-edge and Near-infrared (NIR) bands showed most optimal spectral features for lodging detection. The mean texture of these bands was also found to be sensitive indicators for rice lodging. Combined features with RF classifier produced an overall accuracy of 96.1% with kappa coefficient (κ) of 0.92 followed by textural features with an overall accuracy of 93.5 % and κ of 0.86. Plot level lodging assessment revealed that lodged area varied from 0.1 % to 15.5 % of the cropped area over different plots. The results were validated with the visually interpreted lodged areas using RGB image that resulted into R2 of 0.97 with relative root mean square error (rRMSE) of 0.02 %. Our results conclude that multispectral UAV based remote sensing can help in rapid damage assessment and plot-level field management with high precision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skier发布了新的文献求助10
刚刚
balabala完成签到,获得积分20
刚刚
隐形曼青应助kb采纳,获得10
1秒前
yanyan发布了新的文献求助10
3秒前
繁笙完成签到 ,获得积分10
3秒前
3秒前
无言完成签到 ,获得积分10
3秒前
NONO完成签到 ,获得积分10
4秒前
星辰大海应助TT采纳,获得10
4秒前
6秒前
康康完成签到,获得积分10
6秒前
Xv完成签到,获得积分0
6秒前
9秒前
9秒前
香蕉觅云应助zfzf0422采纳,获得10
9秒前
10秒前
10秒前
李健应助爱听歌的向日葵采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
烟花应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得80
11秒前
所所应助科研通管家采纳,获得20
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Owen应助科研通管家采纳,获得30
12秒前
婷婷发布了新的文献求助10
12秒前
zzt完成签到,获得积分10
14秒前
张小汉发布了新的文献求助30
15秒前
二十四发布了新的文献求助10
15秒前
赘婿应助junzilan采纳,获得10
15秒前
FashionBoy应助勤恳的雨文采纳,获得10
15秒前
aaa完成签到,获得积分10
16秒前
17秒前
11111完成签到,获得积分20
18秒前
仔wang完成签到,获得积分10
18秒前
20秒前
忘羡222发布了新的文献求助20
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824