Non-Invasive Quantification of the Brain [¹⁸F]FDG-PET Using Inferred Blood Input Function Learned From Total-Body Data With Physical Constraint

参数统计 统计参数映射 模式识别(心理学) 均方误差 扫描仪 核医学 计算机科学 人工智能 医学 统计 数学 磁共振成像 放射科
作者
Zhenguo Wang,Yaping Wu,Zeheng Xia,Xinyi Chen,Xiaochen Li,Yan Bai,Yun Zhou,Dong Liang,Hairong Zheng,Yongfeng Yang,Shanshan Wang,Meiyun Wang,Tao Sun
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2563-2573 被引量:5
标识
DOI:10.1109/tmi.2024.3368431
摘要

Full quantification of brain PET requires the blood input function (IF), which is traditionally achieved through an invasive and time-consuming arterial catheter procedure, making it unfeasible for clinical routine. This study presents a deep learning based method to estimate the input function (DLIF) for a dynamic brain FDG scan. A long short-term memory combined with a fully connected network was used. The dataset for training was generated from 85 total-body dynamic scans obtained on a uEXPLORER scanner. Time-activity curves from 8 brain regions and the carotid served as the input of the model, and labelled IF was generated from the ascending aorta defined on CT image. We emphasize the goodness-of-fitting of kinetic modeling as an additional physical loss to reduce the bias and the need for large training samples. DLIF was evaluated together with existing methods in terms of RMSE, area under the curve, regional and parametric image quantifications. The results revealed that the proposed model can generate IFs that closer to the reference ones in terms of shape and amplitude compared with the IFs generated using existing methods. All regional kinetic parameters calculated using DLIF agreed with reference values, with the correlation coefficient being 0.961 (0.913) and relative bias being 1.68±8.74% (0.37±4.93%) for [Formula: see text] ( [Formula: see text]. In terms of the visual appearance and quantification, parametric images were also highly identical to the reference images. In conclusion, our experiments indicate that a trained model can infer an image-derived IF from dynamic brain PET data, which enables subsequent reliable kinetic modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18318933768完成签到,获得积分10
刚刚
研友_ZA2B68完成签到,获得积分0
刚刚
研友_nvebxL完成签到,获得积分10
刚刚
2秒前
Helios完成签到,获得积分0
3秒前
5秒前
nssanc完成签到,获得积分10
6秒前
桐桐应助猪猪hero采纳,获得10
6秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
小二郎应助科研通管家采纳,获得10
7秒前
7秒前
Orange应助科研通管家采纳,获得30
7秒前
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
柯青完成签到 ,获得积分10
7秒前
鹏举瞰冷雨完成签到,获得积分10
8秒前
Amikacin完成签到,获得积分10
8秒前
Noshore完成签到,获得积分10
8秒前
刘乐源发布了新的文献求助10
9秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
boss_astr完成签到,获得积分10
16秒前
Feijiahao完成签到 ,获得积分10
16秒前
刘乐源完成签到,获得积分20
17秒前
猪猪hero发布了新的文献求助10
18秒前
boss_phy完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助50
21秒前
小兔子发布了新的文献求助10
24秒前
lin0u0完成签到,获得积分10
24秒前
美满的水卉完成签到,获得积分10
25秒前
da49完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796234
求助须知:如何正确求助?哪些是违规求助? 5774346
关于积分的说明 15491518
捐赠科研通 4923263
什么是DOI,文献DOI怎么找? 2650269
邀请新用户注册赠送积分活动 1597506
关于科研通互助平台的介绍 1552100